Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380995588> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4380995588 endingPage "7122" @default.
- W4380995588 startingPage "7122" @default.
- W4380995588 abstract "Since informatization and digitization came into life, audio signal emotion classification has been widely studied and discussed as a hot issue in many application fields. With the continuous development of artificial intelligence, in addition to speech and music audio signal emotion classification technology, which is widely used in production life, its application is also becoming more and more abundant. Current research on audiovisual scene emotion classification mainly focuses on the frame-by-frame processing of video images to achieve the discrimination of emotion classification. However, those methods have the problems of algorithms with high complexity and high computing cost, making it difficult to meet the engineering needs of real-time online automatic classification. Therefore, this paper proposes an automatic algorithm for the detection of effective movie shock scenes that can be used for engineering applications by exploring the law of low-frequency sound effects on the perception of known emotions, based on a database of movie emotion scene clips in 5.1 sound format, extracting audio signal feature parameters and performing dichotomous classification of shock and other types of emotions. As LFS can enhance a sense of shock, a monaural algorithm for detecting emotional scenes with impact using a subwoofer (SW) is proposed, which trained a classification model using SW monaural features and achieved a maximum accuracy of 87% on the test set using a convolutional neural network (CNN) model. To expand the application scope of the above algorithm, a monaural algorithm for detecting emotional scenes with impact based on low-pass filtering (with a cutoff frequency of 120 Hz) is proposed, which achieved a maximum accuracy of 91.5% on the test set using a CNN model." @default.
- W4380995588 created "2023-06-17" @default.
- W4380995588 creator A5021296676 @default.
- W4380995588 creator A5023815489 @default.
- W4380995588 creator A5043666783 @default.
- W4380995588 creator A5059116033 @default.
- W4380995588 date "2023-06-14" @default.
- W4380995588 modified "2023-10-11" @default.
- W4380995588 title "Emotion Classification Algorithm for Audiovisual Scenes Based on Low-Frequency Signals" @default.
- W4380995588 cites W1964940342 @default.
- W4380995588 cites W2046556084 @default.
- W4380995588 cites W2060655242 @default.
- W4380995588 cites W2063009662 @default.
- W4380995588 cites W2066550554 @default.
- W4380995588 cites W2070154071 @default.
- W4380995588 cites W2087054143 @default.
- W4380995588 cites W2087618018 @default.
- W4380995588 cites W2092193054 @default.
- W4380995588 cites W2104074072 @default.
- W4380995588 cites W2105024989 @default.
- W4380995588 cites W2105768069 @default.
- W4380995588 cites W2107118376 @default.
- W4380995588 cites W2107430826 @default.
- W4380995588 cites W2118911453 @default.
- W4380995588 cites W2118978333 @default.
- W4380995588 cites W2131522408 @default.
- W4380995588 cites W2132791018 @default.
- W4380995588 cites W2151055832 @default.
- W4380995588 cites W2154196445 @default.
- W4380995588 cites W2793571342 @default.
- W4380995588 cites W2803098682 @default.
- W4380995588 cites W2892071465 @default.
- W4380995588 cites W2991198822 @default.
- W4380995588 cites W3006951794 @default.
- W4380995588 cites W3016550651 @default.
- W4380995588 cites W3161659450 @default.
- W4380995588 cites W3167940128 @default.
- W4380995588 cites W3173222908 @default.
- W4380995588 cites W3173311612 @default.
- W4380995588 cites W4224311674 @default.
- W4380995588 cites W4310201059 @default.
- W4380995588 cites W4318570632 @default.
- W4380995588 cites W4360856918 @default.
- W4380995588 cites W4364378283 @default.
- W4380995588 cites W759630152 @default.
- W4380995588 doi "https://doi.org/10.3390/app13127122" @default.
- W4380995588 hasPublicationYear "2023" @default.
- W4380995588 type Work @default.
- W4380995588 citedByCount "0" @default.
- W4380995588 crossrefType "journal-article" @default.
- W4380995588 hasAuthorship W4380995588A5021296676 @default.
- W4380995588 hasAuthorship W4380995588A5023815489 @default.
- W4380995588 hasAuthorship W4380995588A5043666783 @default.
- W4380995588 hasAuthorship W4380995588A5059116033 @default.
- W4380995588 hasBestOaLocation W43809955881 @default.
- W4380995588 hasConcept C102894143 @default.
- W4380995588 hasConcept C126042441 @default.
- W4380995588 hasConcept C13895895 @default.
- W4380995588 hasConcept C153180895 @default.
- W4380995588 hasConcept C154945302 @default.
- W4380995588 hasConcept C177264268 @default.
- W4380995588 hasConcept C199360897 @default.
- W4380995588 hasConcept C28490314 @default.
- W4380995588 hasConcept C41008148 @default.
- W4380995588 hasConcept C64922751 @default.
- W4380995588 hasConcept C76155785 @default.
- W4380995588 hasConcept C81363708 @default.
- W4380995588 hasConceptScore W4380995588C102894143 @default.
- W4380995588 hasConceptScore W4380995588C126042441 @default.
- W4380995588 hasConceptScore W4380995588C13895895 @default.
- W4380995588 hasConceptScore W4380995588C153180895 @default.
- W4380995588 hasConceptScore W4380995588C154945302 @default.
- W4380995588 hasConceptScore W4380995588C177264268 @default.
- W4380995588 hasConceptScore W4380995588C199360897 @default.
- W4380995588 hasConceptScore W4380995588C28490314 @default.
- W4380995588 hasConceptScore W4380995588C41008148 @default.
- W4380995588 hasConceptScore W4380995588C64922751 @default.
- W4380995588 hasConceptScore W4380995588C76155785 @default.
- W4380995588 hasConceptScore W4380995588C81363708 @default.
- W4380995588 hasIssue "12" @default.
- W4380995588 hasLocation W43809955881 @default.
- W4380995588 hasOpenAccess W4380995588 @default.
- W4380995588 hasPrimaryLocation W43809955881 @default.
- W4380995588 hasRelatedWork W1518859147 @default.
- W4380995588 hasRelatedWork W1974981856 @default.
- W4380995588 hasRelatedWork W1983045063 @default.
- W4380995588 hasRelatedWork W2036157531 @default.
- W4380995588 hasRelatedWork W2045506488 @default.
- W4380995588 hasRelatedWork W2056406069 @default.
- W4380995588 hasRelatedWork W2072124114 @default.
- W4380995588 hasRelatedWork W2401567014 @default.
- W4380995588 hasRelatedWork W2944394647 @default.
- W4380995588 hasRelatedWork W4321794819 @default.
- W4380995588 hasVolume "13" @default.
- W4380995588 isParatext "false" @default.
- W4380995588 isRetracted "false" @default.
- W4380995588 workType "article" @default.