Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380995961> ?p ?o ?g. }
- W4380995961 endingPage "9583" @default.
- W4380995961 startingPage "9583" @default.
- W4380995961 abstract "The number of leaves in maize seedlings is an essential indicator of their growth rate and status. However, manual counting of seedlings is inefficient and limits the scope of the investigation. Deep learning has shown potential for quickly identifying seedlings, but it requires larger, labeled datasets. To address these challenges, we proposed a method for counting maize leaves from seedlings in fields using a combination of semi-supervised learning, deep learning, and UAV digital imagery. Our approach leveraged semi-supervised learning and novel methods for detecting and counting maize seedling leaves accurately and efficiently. Specifically, we used a small amount of labeled data to train the SOLOv2 model based on the semi-supervised learning framework Noisy Student. This model can segment complete maize seedlings from UAV digital imagery and generate foreground images of maize seedlings with background removal. We then trained the YOLOv5x model based on Noisy Student with a small amount of labeled data to detect and count maize leaves. We divided our dataset of 1005 images into 904 training images and 101 testing images, and randomly divided the 904 training images into four sets of labeled and unlabeled data with proportions of 4:6, 3:7, 2:8, and 1:9, respectively. The results indicated that the SOLOv2 Resnet101 outperformed the SOLOv2 Resnet50 in terms of segmentation performance. Moreover, when the labeled proportion was 30%, the student model SOLOv2 achieved a similar segmentation performance to the fully supervised model with a mean average precision (mAP) of 93.6%. When the labeled proportion was 40%, the student model YOLOv5x demonstrated comparable leaf counting performance to the fully supervised model. The model achieved an average precision of 89.6% and 57.4% for fully unfolded leaves and newly appearing leaves, respectively, with counting accuracy rates of 69.4% and 72.9%. These results demonstrated that our proposed method based on semi-supervised learning and UAV imagery can advance research on crop leaf counting in fields and reduce the workload of data annotation." @default.
- W4380995961 created "2023-06-17" @default.
- W4380995961 creator A5005159928 @default.
- W4380995961 creator A5029484872 @default.
- W4380995961 creator A5047923660 @default.
- W4380995961 creator A5048439007 @default.
- W4380995961 creator A5060894111 @default.
- W4380995961 creator A5071413978 @default.
- W4380995961 creator A5076439335 @default.
- W4380995961 creator A5080731428 @default.
- W4380995961 date "2023-06-14" @default.
- W4380995961 modified "2023-09-28" @default.
- W4380995961 title "Maize Seedling Leave Counting Based on Semi-Supervised Learning and UAV RGB Images" @default.
- W4380995961 cites W2931911031 @default.
- W4380995961 cites W3001206897 @default.
- W4380995961 cites W3013566660 @default.
- W4380995961 cites W3024506755 @default.
- W4380995961 cites W3035160371 @default.
- W4380995961 cites W3043373364 @default.
- W4380995961 cites W3084847787 @default.
- W4380995961 cites W3153898230 @default.
- W4380995961 cites W3154590463 @default.
- W4380995961 cites W3160658661 @default.
- W4380995961 cites W3175012015 @default.
- W4380995961 cites W3178185340 @default.
- W4380995961 cites W3182693701 @default.
- W4380995961 cites W3204216133 @default.
- W4380995961 cites W3205388032 @default.
- W4380995961 cites W3206704828 @default.
- W4380995961 cites W3209170181 @default.
- W4380995961 cites W4200260009 @default.
- W4380995961 cites W4210473623 @default.
- W4380995961 cites W4213024100 @default.
- W4380995961 cites W4220653838 @default.
- W4380995961 cites W4220766500 @default.
- W4380995961 cites W4220871058 @default.
- W4380995961 cites W4224100069 @default.
- W4380995961 cites W4224306206 @default.
- W4380995961 cites W4226213190 @default.
- W4380995961 cites W4280519543 @default.
- W4380995961 cites W4280578135 @default.
- W4380995961 cites W4281751969 @default.
- W4380995961 cites W4283122708 @default.
- W4380995961 cites W4283705343 @default.
- W4380995961 cites W4283752107 @default.
- W4380995961 cites W4285384726 @default.
- W4380995961 cites W4288901876 @default.
- W4380995961 cites W4290744539 @default.
- W4380995961 cites W4292428556 @default.
- W4380995961 cites W4296919087 @default.
- W4380995961 cites W4296971205 @default.
- W4380995961 cites W4297798764 @default.
- W4380995961 cites W4301184583 @default.
- W4380995961 cites W4307434366 @default.
- W4380995961 cites W4307704630 @default.
- W4380995961 cites W4307957987 @default.
- W4380995961 cites W4309211563 @default.
- W4380995961 cites W4309263308 @default.
- W4380995961 cites W4309339521 @default.
- W4380995961 cites W4313433600 @default.
- W4380995961 cites W4315567946 @default.
- W4380995961 cites W4318484044 @default.
- W4380995961 cites W4327951444 @default.
- W4380995961 cites W4366085631 @default.
- W4380995961 doi "https://doi.org/10.3390/su15129583" @default.
- W4380995961 hasPublicationYear "2023" @default.
- W4380995961 type Work @default.
- W4380995961 citedByCount "0" @default.
- W4380995961 crossrefType "journal-article" @default.
- W4380995961 hasAuthorship W4380995961A5005159928 @default.
- W4380995961 hasAuthorship W4380995961A5029484872 @default.
- W4380995961 hasAuthorship W4380995961A5047923660 @default.
- W4380995961 hasAuthorship W4380995961A5048439007 @default.
- W4380995961 hasAuthorship W4380995961A5060894111 @default.
- W4380995961 hasAuthorship W4380995961A5071413978 @default.
- W4380995961 hasAuthorship W4380995961A5076439335 @default.
- W4380995961 hasAuthorship W4380995961A5080731428 @default.
- W4380995961 hasBestOaLocation W43809959611 @default.
- W4380995961 hasConcept C108583219 @default.
- W4380995961 hasConcept C119857082 @default.
- W4380995961 hasConcept C136389625 @default.
- W4380995961 hasConcept C144027150 @default.
- W4380995961 hasConcept C153180895 @default.
- W4380995961 hasConcept C154945302 @default.
- W4380995961 hasConcept C2776096895 @default.
- W4380995961 hasConcept C2776145971 @default.
- W4380995961 hasConcept C33923547 @default.
- W4380995961 hasConcept C41008148 @default.
- W4380995961 hasConcept C50644808 @default.
- W4380995961 hasConcept C58973888 @default.
- W4380995961 hasConcept C82990744 @default.
- W4380995961 hasConcept C86803240 @default.
- W4380995961 hasConcept C89600930 @default.
- W4380995961 hasConceptScore W4380995961C108583219 @default.
- W4380995961 hasConceptScore W4380995961C119857082 @default.
- W4380995961 hasConceptScore W4380995961C136389625 @default.
- W4380995961 hasConceptScore W4380995961C144027150 @default.
- W4380995961 hasConceptScore W4380995961C153180895 @default.