Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381052904> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4381052904 abstract "This work aims at detection and estimation of a change point in conditional variance function of a Nonparametric Auto-Regressive Conditional Heteroscedastic model. The conditional mean and conditional variance functions are not specified a priori but estimated using Nadaraya Watson kernel. This is because inferences based on nonparametric approaches are robust against misspecification of the conditional mean function and the conditional variance function of returns. The squared residuals obtained after estimating the regression function of the returns are used in estimating the conditional variance function. Further, the squared residuals are used in developing a test statistic for unknown abrupt change point in volatility of the exchange rate returns. The test statistic takes into consideration the conditional heteroskedasticity of the disturbances, dependence of the returns, heterogeneity and fourth moment of returns. This does not require prior knowledge of the marginal or the conditional densities of the returns as opposed to maximum likelihood estimation methods. The estimator for change point is considered as the augmented maximum of the test statistic. The consistency of the estimator is stated as a theorem. The asymptotic distribution associated with the test for unknown break points is the Bessel process distribution. The Bessel process distributions have no known simple closed-form expression for the distribution function which makes it difficult to compute exact p-values. Also, the Bessel process distributions depend on two parameters which makes it hard to tabulate the critical values hence one needs to simulate them. After simulating the critical values, hypothesis testing is done in the presence and absence of a change point in volatility of a simulated time series and the test is shown to reject the null hypothesis in the presence of a change point at alpha level of significance. Further, the test fails to reject the null hypothesis in the absence of a change point at alpha level of significance. An application to United States Dollar/Kenya Shilling historical exchange rates returns is made from 1<sup>st</sup> January 2010 to 27<sup>th</sup> November 2020 where the sample size n = 2839 is done. Through binary segmentation method, three change points are detected, estimated and accounted for. A significant improvement in describing a time series is expected if a point in time for volatility change has been detected and estimated." @default.
- W4381052904 created "2023-06-18" @default.
- W4381052904 creator A5001951063 @default.
- W4381052904 creator A5004915759 @default.
- W4381052904 creator A5085634083 @default.
- W4381052904 date "2023-04-06" @default.
- W4381052904 modified "2023-10-14" @default.
- W4381052904 title "Detection and Estimation of Change Point in Volatility Function of Foreign Exchange Rate Returns" @default.
- W4381052904 doi "https://doi.org/10.11648/j.ijdsa.20230901.11" @default.
- W4381052904 hasPublicationYear "2023" @default.
- W4381052904 type Work @default.
- W4381052904 citedByCount "0" @default.
- W4381052904 crossrefType "journal-article" @default.
- W4381052904 hasAuthorship W4381052904A5001951063 @default.
- W4381052904 hasAuthorship W4381052904A5004915759 @default.
- W4381052904 hasAuthorship W4381052904A5085634083 @default.
- W4381052904 hasBestOaLocation W43810529041 @default.
- W4381052904 hasConcept C101104100 @default.
- W4381052904 hasConcept C102366305 @default.
- W4381052904 hasConcept C105795698 @default.
- W4381052904 hasConcept C149782125 @default.
- W4381052904 hasConcept C169857963 @default.
- W4381052904 hasConcept C185429906 @default.
- W4381052904 hasConcept C186215838 @default.
- W4381052904 hasConcept C21430997 @default.
- W4381052904 hasConcept C23922673 @default.
- W4381052904 hasConcept C33923547 @default.
- W4381052904 hasConcept C43555835 @default.
- W4381052904 hasConcept C65778772 @default.
- W4381052904 hasConcept C87007009 @default.
- W4381052904 hasConcept C91602232 @default.
- W4381052904 hasConceptScore W4381052904C101104100 @default.
- W4381052904 hasConceptScore W4381052904C102366305 @default.
- W4381052904 hasConceptScore W4381052904C105795698 @default.
- W4381052904 hasConceptScore W4381052904C149782125 @default.
- W4381052904 hasConceptScore W4381052904C169857963 @default.
- W4381052904 hasConceptScore W4381052904C185429906 @default.
- W4381052904 hasConceptScore W4381052904C186215838 @default.
- W4381052904 hasConceptScore W4381052904C21430997 @default.
- W4381052904 hasConceptScore W4381052904C23922673 @default.
- W4381052904 hasConceptScore W4381052904C33923547 @default.
- W4381052904 hasConceptScore W4381052904C43555835 @default.
- W4381052904 hasConceptScore W4381052904C65778772 @default.
- W4381052904 hasConceptScore W4381052904C87007009 @default.
- W4381052904 hasConceptScore W4381052904C91602232 @default.
- W4381052904 hasLocation W43810529041 @default.
- W4381052904 hasOpenAccess W4381052904 @default.
- W4381052904 hasPrimaryLocation W43810529041 @default.
- W4381052904 hasRelatedWork W1904330492 @default.
- W4381052904 hasRelatedWork W1985626016 @default.
- W4381052904 hasRelatedWork W2004072500 @default.
- W4381052904 hasRelatedWork W2052260177 @default.
- W4381052904 hasRelatedWork W2161652914 @default.
- W4381052904 hasRelatedWork W2167027824 @default.
- W4381052904 hasRelatedWork W2606792327 @default.
- W4381052904 hasRelatedWork W3041526754 @default.
- W4381052904 hasRelatedWork W3122477737 @default.
- W4381052904 hasRelatedWork W619221403 @default.
- W4381052904 isParatext "false" @default.
- W4381052904 isRetracted "false" @default.
- W4381052904 workType "article" @default.