Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381094773> ?p ?o ?g. }
- W4381094773 abstract "Studies on the going-on COVID-19 pandemic face small sample issues. In this context, Bayesian estimation is considered a viable alternative to frequentist estimation. Demonstrating the Bayesian approach’s advantage in dealing with this problem, our research conducted a case study concerning ASEAN economic growth during the COVID-19 pandemic. By using Monte Carlo standard errors and interval hypothesis testing to check parameter bias within a Bayesian MCMC simulation study, the author obtained significant conclusions as follows: first, in insufficient sample sizes, in contrast to frequentist estimation, the Bayesian framework can offer meaningful results, that is, expansionary monetary and contractionary fiscal policies are positively associated with economic growth; second, in the face of a small sample, by incorporating more information into prior distributions for the model parameters, Bayesian Monte Carlo simulations perform so far better than naïve Bayesian and frequentist estimation; third, in case of a correctly specified prior, the inferences are robust to different prior specifications. The author strongly recommends applying specific informative priors to Bayesian analyses, particularly in small sample investigations." @default.
- W4381094773 created "2023-06-18" @default.
- W4381094773 creator A5055175461 @default.
- W4381094773 date "2023-04-01" @default.
- W4381094773 modified "2023-10-18" @default.
- W4381094773 title "Applying Monte Carlo Simulations to a Small Data Analysis of a Case of Economic Growth in COVID-19 Times" @default.
- W4381094773 cites W1536497620 @default.
- W4381094773 cites W1854325052 @default.
- W4381094773 cites W1964072811 @default.
- W4381094773 cites W1971638368 @default.
- W4381094773 cites W1999076954 @default.
- W4381094773 cites W1999291824 @default.
- W4381094773 cites W2008703230 @default.
- W4381094773 cites W2008992734 @default.
- W4381094773 cites W2027369775 @default.
- W4381094773 cites W2029761052 @default.
- W4381094773 cites W2031595395 @default.
- W4381094773 cites W2041373569 @default.
- W4381094773 cites W2041757971 @default.
- W4381094773 cites W2082770695 @default.
- W4381094773 cites W2098630919 @default.
- W4381094773 cites W2101418526 @default.
- W4381094773 cites W2105824687 @default.
- W4381094773 cites W2115051635 @default.
- W4381094773 cites W2140982255 @default.
- W4381094773 cites W2157335584 @default.
- W4381094773 cites W2157736211 @default.
- W4381094773 cites W2159532703 @default.
- W4381094773 cites W2160911255 @default.
- W4381094773 cites W2184900176 @default.
- W4381094773 cites W2293738871 @default.
- W4381094773 cites W2413419749 @default.
- W4381094773 cites W2463280782 @default.
- W4381094773 cites W2511384229 @default.
- W4381094773 cites W2584464732 @default.
- W4381094773 cites W2606464018 @default.
- W4381094773 cites W2609159880 @default.
- W4381094773 cites W2622091505 @default.
- W4381094773 cites W2738655609 @default.
- W4381094773 cites W2755730676 @default.
- W4381094773 cites W2904739430 @default.
- W4381094773 cites W2944958851 @default.
- W4381094773 cites W3009625718 @default.
- W4381094773 cites W3010976889 @default.
- W4381094773 cites W3011183947 @default.
- W4381094773 cites W3012645029 @default.
- W4381094773 cites W3012901173 @default.
- W4381094773 cites W3012960944 @default.
- W4381094773 cites W3014934384 @default.
- W4381094773 cites W3015769695 @default.
- W4381094773 cites W3015789985 @default.
- W4381094773 cites W3023275770 @default.
- W4381094773 cites W3033503306 @default.
- W4381094773 cites W3034908943 @default.
- W4381094773 cites W3035924946 @default.
- W4381094773 cites W3036309462 @default.
- W4381094773 cites W3036362982 @default.
- W4381094773 cites W3036738370 @default.
- W4381094773 cites W3036868177 @default.
- W4381094773 cites W3041152699 @default.
- W4381094773 cites W3043965874 @default.
- W4381094773 cites W3044119150 @default.
- W4381094773 cites W3044305529 @default.
- W4381094773 cites W3044339234 @default.
- W4381094773 cites W3044523895 @default.
- W4381094773 cites W3044930419 @default.
- W4381094773 cites W3045592824 @default.
- W4381094773 cites W3048300780 @default.
- W4381094773 cites W3084079137 @default.
- W4381094773 cites W3087542431 @default.
- W4381094773 cites W3088730674 @default.
- W4381094773 cites W3096091175 @default.
- W4381094773 cites W3097696495 @default.
- W4381094773 cites W3097854214 @default.
- W4381094773 cites W3111573426 @default.
- W4381094773 cites W3111589756 @default.
- W4381094773 cites W3113376803 @default.
- W4381094773 cites W3118978548 @default.
- W4381094773 cites W3121762057 @default.
- W4381094773 cites W3124703943 @default.
- W4381094773 cites W3124719779 @default.
- W4381094773 cites W3130859517 @default.
- W4381094773 cites W3131428626 @default.
- W4381094773 cites W3137253544 @default.
- W4381094773 cites W3139501372 @default.
- W4381094773 cites W3149029496 @default.
- W4381094773 cites W3168356851 @default.
- W4381094773 cites W3210840728 @default.
- W4381094773 cites W3211266864 @default.
- W4381094773 cites W4200043131 @default.
- W4381094773 cites W4220978999 @default.
- W4381094773 cites W4224308322 @default.
- W4381094773 cites W4226173469 @default.
- W4381094773 cites W4251109460 @default.
- W4381094773 cites W4253749611 @default.
- W4381094773 cites W4283462123 @default.
- W4381094773 cites W4285244411 @default.
- W4381094773 doi "https://doi.org/10.1177/21582440231181540" @default.
- W4381094773 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37362768" @default.
- W4381094773 hasPublicationYear "2023" @default.