Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381114379> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4381114379 abstract "Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): HORIZON. Introduction Stress echocardiography (SE) is a recognized method for risk assessment and detection of coronary artery disease. Although left atrial (LA) and left ventricle (LV) volumes provide valuable information during SE, the time-consuming manual tracings of these structures and operator-dependent accuracy remain significant limitations in analyzing and interpreting SE that might be overcome by automated evaluation. Purpose To assess the potential of an automated machine learning (ML) system for the volumetric evaluation of left-sided heart volumes during SE. Methods The study enrolled 218 participants from five recruiting centers who underwent SE (in most cases, dipyridamole SE). Imaging data were acquired in DICOM format and anonymized for further processing. The studies were evaluated by an expert cardiologist trained in SE evaluation who selected apical four-chamber (4Ch) and two-chamber (2Ch) view images during stress and rest phases an marked end-systolic (ES) and end-diastolic (ED) frames and traced endocardial borders for LA (in ES) and LV (in ED and ES). The same frames were then processed by a transformer neural network trained on a separate set of images. LA volume (LAV), LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), and LV ejection fraction (LVEF) was calculated in 4Ch and 2Ch views during rest and at stress phases. Each evaluator (cardiologist and ML model) was blinded from each other's measurements. All of the tracings and automated measurements were performed on the same platform. Results Comparison between evaluators by Student's paired t-test showed the best agreement between LAV (4Ch) and LVESV (2Ch) during the rest phase and LVEDV (4Ch and 2Ch) during the stress phase (p>0.05). Other volumetric measurements tended to be slightly higher (except LVEDVs at rest) and LVEF lower assessed by ML than by cardiologists. Pearson's correlation analysis demonstrated strong correlations between the ML model and cardiologist for LAVs (4Ch LAV r=0.94, p<0.001 and r=0.93, p<0.001, 2Ch LAV r=0.91, p<0.001 and r=0.88, p<0.001 at rest and stress, respectively), and LV volumes (4Ch LVEDV r=0.86, p<0.001 and r=0.84, p<0.001, 2Ch LVEDV r=0.82, p<0.001 and r=0.93, p<0.001, 4Ch LVESV r=0.82, p<0.001 and r=0.83, p<0.001, 2Ch LVESV r=0.86, p<0.001 and r=0.82, p<0.001 at rest and stress, respectively), and moderate correlations for LVEF measurements during rest and stress phases. The strongest correlations between raters and the smallest root mean squared errors (RMSEs) were for LAV measurements. Conclusions This multicenter study showed the effectiveness of using ML to produce left-sided heart measurements during SE. There was a tendency for higher volumes assessed by ML, demonstrating the need for additional standardization of SE evaluation for more precise accuracy. However, correlations between the ML model and cardiologists' measurements for left-sided heart volumes were strong during the rest and the stress phases." @default.
- W4381114379 created "2023-06-19" @default.
- W4381114379 creator A5008727442 @default.
- W4381114379 creator A5028570238 @default.
- W4381114379 creator A5032521999 @default.
- W4381114379 creator A5032749247 @default.
- W4381114379 creator A5033067299 @default.
- W4381114379 creator A5039446568 @default.
- W4381114379 creator A5040126671 @default.
- W4381114379 creator A5056010937 @default.
- W4381114379 creator A5058307497 @default.
- W4381114379 creator A5067240083 @default.
- W4381114379 creator A5071238850 @default.
- W4381114379 creator A5083589561 @default.
- W4381114379 creator A5084200864 @default.
- W4381114379 creator A5086196151 @default.
- W4381114379 creator A5092196608 @default.
- W4381114379 date "2023-06-01" @default.
- W4381114379 modified "2023-09-27" @default.
- W4381114379 title "Automated evaluation of the left-sided heart volumes using machine learning during stress echocardiography: a multicenter stress echo 2030 study" @default.
- W4381114379 doi "https://doi.org/10.1093/ehjci/jead119.220" @default.
- W4381114379 hasPublicationYear "2023" @default.
- W4381114379 type Work @default.
- W4381114379 citedByCount "0" @default.
- W4381114379 crossrefType "journal-article" @default.
- W4381114379 hasAuthorship W4381114379A5008727442 @default.
- W4381114379 hasAuthorship W4381114379A5028570238 @default.
- W4381114379 hasAuthorship W4381114379A5032521999 @default.
- W4381114379 hasAuthorship W4381114379A5032749247 @default.
- W4381114379 hasAuthorship W4381114379A5033067299 @default.
- W4381114379 hasAuthorship W4381114379A5039446568 @default.
- W4381114379 hasAuthorship W4381114379A5040126671 @default.
- W4381114379 hasAuthorship W4381114379A5056010937 @default.
- W4381114379 hasAuthorship W4381114379A5058307497 @default.
- W4381114379 hasAuthorship W4381114379A5067240083 @default.
- W4381114379 hasAuthorship W4381114379A5071238850 @default.
- W4381114379 hasAuthorship W4381114379A5083589561 @default.
- W4381114379 hasAuthorship W4381114379A5084200864 @default.
- W4381114379 hasAuthorship W4381114379A5086196151 @default.
- W4381114379 hasAuthorship W4381114379A5092196608 @default.
- W4381114379 hasBestOaLocation W43811143791 @default.
- W4381114379 hasConcept C126322002 @default.
- W4381114379 hasConcept C126838900 @default.
- W4381114379 hasConcept C154945302 @default.
- W4381114379 hasConcept C164705383 @default.
- W4381114379 hasConcept C2778198053 @default.
- W4381114379 hasConcept C2778213512 @default.
- W4381114379 hasConcept C2778921608 @default.
- W4381114379 hasConcept C2909814191 @default.
- W4381114379 hasConcept C2989005 @default.
- W4381114379 hasConcept C41008148 @default.
- W4381114379 hasConcept C57900726 @default.
- W4381114379 hasConcept C71924100 @default.
- W4381114379 hasConcept C78085059 @default.
- W4381114379 hasConcept C84393581 @default.
- W4381114379 hasConceptScore W4381114379C126322002 @default.
- W4381114379 hasConceptScore W4381114379C126838900 @default.
- W4381114379 hasConceptScore W4381114379C154945302 @default.
- W4381114379 hasConceptScore W4381114379C164705383 @default.
- W4381114379 hasConceptScore W4381114379C2778198053 @default.
- W4381114379 hasConceptScore W4381114379C2778213512 @default.
- W4381114379 hasConceptScore W4381114379C2778921608 @default.
- W4381114379 hasConceptScore W4381114379C2909814191 @default.
- W4381114379 hasConceptScore W4381114379C2989005 @default.
- W4381114379 hasConceptScore W4381114379C41008148 @default.
- W4381114379 hasConceptScore W4381114379C57900726 @default.
- W4381114379 hasConceptScore W4381114379C71924100 @default.
- W4381114379 hasConceptScore W4381114379C78085059 @default.
- W4381114379 hasConceptScore W4381114379C84393581 @default.
- W4381114379 hasIssue "Supplement_1" @default.
- W4381114379 hasLocation W43811143791 @default.
- W4381114379 hasOpenAccess W4381114379 @default.
- W4381114379 hasPrimaryLocation W43811143791 @default.
- W4381114379 hasRelatedWork W143082876 @default.
- W4381114379 hasRelatedWork W1602201930 @default.
- W4381114379 hasRelatedWork W1967628776 @default.
- W4381114379 hasRelatedWork W2010107202 @default.
- W4381114379 hasRelatedWork W2033207011 @default.
- W4381114379 hasRelatedWork W2381206123 @default.
- W4381114379 hasRelatedWork W2418353436 @default.
- W4381114379 hasRelatedWork W2900388542 @default.
- W4381114379 hasRelatedWork W2912421895 @default.
- W4381114379 hasRelatedWork W4361243003 @default.
- W4381114379 hasVolume "24" @default.
- W4381114379 isParatext "false" @default.
- W4381114379 isRetracted "false" @default.
- W4381114379 workType "article" @default.