Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381114503> ?p ?o ?g. }
- W4381114503 endingPage "20017" @default.
- W4381114503 startingPage "19993" @default.
- W4381114503 abstract "<abstract> <p>Energy operations and schedules are significantly impacted by load and energy forecasting systems. An effective system is a requirement for a sustainable and equitable environment. Additionally, a trustworthy forecasting management system enhances the resilience of power systems by cutting power and load-forecast flaws. However, due to the numerous inherent nonlinear properties of huge and diverse data, the classical statistical methodology cannot appropriately learn this non-linearity in data. Energy systems can appropriately evaluate data and regulate energy consumption because of advanced techniques. In comparison to machine learning, deep learning techniques have lately been used to predict energy consumption as well as to learn long-term dependencies. In this work, a fusion of novel multi-directional gated recurrent unit (MD-GRU) with convolutional neural network (CNN) using global average pooling (GAP) as hybridization is being proposed for load and energy forecasting. The spatial and temporal aspects, along with the high dimensionality of the data, are addressed by employing the capabilities of MD-GRU and CNN integration. The obtained results are compared to baseline algorithms including CNN, Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU). The experimental findings indicate that the proposed approach surpasses conventional approaches in terms of accuracy, Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RSME).</p> </abstract>" @default.
- W4381114503 created "2023-06-19" @default.
- W4381114503 creator A5007160933 @default.
- W4381114503 creator A5022884973 @default.
- W4381114503 creator A5047146376 @default.
- W4381114503 creator A5051374204 @default.
- W4381114503 date "2023-01-01" @default.
- W4381114503 modified "2023-09-27" @default.
- W4381114503 title "Multi-directional gated recurrent unit and convolutional neural network for load and energy forecasting: A novel hybridization" @default.
- W4381114503 cites W1481639214 @default.
- W4381114503 cites W179875071 @default.
- W4381114503 cites W1984051156 @default.
- W4381114503 cites W1987498744 @default.
- W4381114503 cites W2003303386 @default.
- W4381114503 cites W2005683380 @default.
- W4381114503 cites W2023419040 @default.
- W4381114503 cites W2044186388 @default.
- W4381114503 cites W2044897326 @default.
- W4381114503 cites W2064675550 @default.
- W4381114503 cites W2069143585 @default.
- W4381114503 cites W2086052667 @default.
- W4381114503 cites W2094054185 @default.
- W4381114503 cites W2097117768 @default.
- W4381114503 cites W2108838778 @default.
- W4381114503 cites W2131774270 @default.
- W4381114503 cites W2171928131 @default.
- W4381114503 cites W2209798243 @default.
- W4381114503 cites W2727827603 @default.
- W4381114503 cites W2743719242 @default.
- W4381114503 cites W2747672899 @default.
- W4381114503 cites W2751148689 @default.
- W4381114503 cites W2757931374 @default.
- W4381114503 cites W2788553534 @default.
- W4381114503 cites W2792800544 @default.
- W4381114503 cites W2888797051 @default.
- W4381114503 cites W2900680591 @default.
- W4381114503 cites W2910164082 @default.
- W4381114503 cites W2923962282 @default.
- W4381114503 cites W2943926435 @default.
- W4381114503 cites W2946664576 @default.
- W4381114503 cites W2947175452 @default.
- W4381114503 cites W2949847272 @default.
- W4381114503 cites W2956074973 @default.
- W4381114503 cites W2958851591 @default.
- W4381114503 cites W2963542836 @default.
- W4381114503 cites W2975836901 @default.
- W4381114503 cites W2990451522 @default.
- W4381114503 cites W3122220845 @default.
- W4381114503 cites W3160928686 @default.
- W4381114503 cites W3184208869 @default.
- W4381114503 cites W3186723494 @default.
- W4381114503 cites W3206286754 @default.
- W4381114503 cites W417143071 @default.
- W4381114503 cites W4200280474 @default.
- W4381114503 cites W4206023940 @default.
- W4381114503 cites W4206227616 @default.
- W4381114503 cites W4206816939 @default.
- W4381114503 cites W4210447104 @default.
- W4381114503 cites W4221087405 @default.
- W4381114503 cites W4226054541 @default.
- W4381114503 cites W4281703050 @default.
- W4381114503 cites W4283311804 @default.
- W4381114503 cites W4285122835 @default.
- W4381114503 cites W4285794136 @default.
- W4381114503 cites W4285821766 @default.
- W4381114503 cites W4286361941 @default.
- W4381114503 cites W4294713055 @default.
- W4381114503 cites W4318426282 @default.
- W4381114503 cites W4319159759 @default.
- W4381114503 cites W4320913312 @default.
- W4381114503 cites W4327545557 @default.
- W4381114503 doi "https://doi.org/10.3934/math.20231019" @default.
- W4381114503 hasPublicationYear "2023" @default.
- W4381114503 type Work @default.
- W4381114503 citedByCount "0" @default.
- W4381114503 crossrefType "journal-article" @default.
- W4381114503 hasAuthorship W4381114503A5007160933 @default.
- W4381114503 hasAuthorship W4381114503A5022884973 @default.
- W4381114503 hasAuthorship W4381114503A5047146376 @default.
- W4381114503 hasAuthorship W4381114503A5051374204 @default.
- W4381114503 hasBestOaLocation W43811145031 @default.
- W4381114503 hasConcept C105795698 @default.
- W4381114503 hasConcept C108583219 @default.
- W4381114503 hasConcept C119599485 @default.
- W4381114503 hasConcept C119857082 @default.
- W4381114503 hasConcept C124101348 @default.
- W4381114503 hasConcept C127413603 @default.
- W4381114503 hasConcept C139945424 @default.
- W4381114503 hasConcept C147168706 @default.
- W4381114503 hasConcept C150217764 @default.
- W4381114503 hasConcept C154945302 @default.
- W4381114503 hasConcept C2780165032 @default.
- W4381114503 hasConcept C33923547 @default.
- W4381114503 hasConcept C41008148 @default.
- W4381114503 hasConcept C50644808 @default.
- W4381114503 hasConcept C70437156 @default.
- W4381114503 hasConcept C81363708 @default.
- W4381114503 hasConceptScore W4381114503C105795698 @default.