Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381137085> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4381137085 endingPage "21" @default.
- W4381137085 startingPage "14" @default.
- W4381137085 abstract "The rapid advancements in the internet and communication sectors have led to a huge expansion in the network dimension and the related data. The proliferation of new assault kinds as a result makes it challenging for community safety to accurately identify invasions. Furthermore, the presence of intruders who want to launch a lot of attacks against the network cannot be ignored. An intrusion detection device (IDS) is one such instrument that protects against prospective intrusions by monitoring community communication to guarantee its confidentiality, integrity, and availability. IDS continues to struggle with innovative intrusion detection, lowering false alarm rates, and improving detection accuracy despite substantial research backing. An intrusion detection system's main job is to protect resources against threats. It predicts user behaviour based on analysis, and determines whether that behaviour constitutes an assault or is simply normal behaviour. We use Support Vector Machine (SVM) and Rough Set Theory (RST) to detect network breaches (SVM). Computer learning (ML) and Python-based total IDS systems are recently being employed to identify intrusions across the network in an ecologically friendly manner. The taxonomy presented in this article is mostly based on the impressive machine learning and Python approaches used to develop network-based IDS (NIDS) systems. The article begins by defining IDS." @default.
- W4381137085 created "2023-06-19" @default.
- W4381137085 creator A5058495787 @default.
- W4381137085 creator A5070845350 @default.
- W4381137085 creator A5092197599 @default.
- W4381137085 creator A5092197600 @default.
- W4381137085 creator A5092197601 @default.
- W4381137085 date "2023-06-18" @default.
- W4381137085 modified "2023-10-01" @default.
- W4381137085 title "Utilizing Machine Learning for Intrusion Detection Systems in the Context of Cloud Computing" @default.
- W4381137085 cites W1551618785 @default.
- W4381137085 cites W1554695315 @default.
- W4381137085 cites W2025789273 @default.
- W4381137085 cites W2054731088 @default.
- W4381137085 cites W2092649680 @default.
- W4381137085 cites W2103378897 @default.
- W4381137085 cites W2141992351 @default.
- W4381137085 cites W2165728855 @default.
- W4381137085 doi "https://doi.org/10.48175/ijarsct-11603" @default.
- W4381137085 hasPublicationYear "2023" @default.
- W4381137085 type Work @default.
- W4381137085 citedByCount "0" @default.
- W4381137085 crossrefType "journal-article" @default.
- W4381137085 hasAuthorship W4381137085A5058495787 @default.
- W4381137085 hasAuthorship W4381137085A5070845350 @default.
- W4381137085 hasAuthorship W4381137085A5092197599 @default.
- W4381137085 hasAuthorship W4381137085A5092197600 @default.
- W4381137085 hasAuthorship W4381137085A5092197601 @default.
- W4381137085 hasBestOaLocation W43811370851 @default.
- W4381137085 hasConcept C110875604 @default.
- W4381137085 hasConcept C111919701 @default.
- W4381137085 hasConcept C119857082 @default.
- W4381137085 hasConcept C12267149 @default.
- W4381137085 hasConcept C124101348 @default.
- W4381137085 hasConcept C136764020 @default.
- W4381137085 hasConcept C154945302 @default.
- W4381137085 hasConcept C35525427 @default.
- W4381137085 hasConcept C38652104 @default.
- W4381137085 hasConcept C41008148 @default.
- W4381137085 hasConcept C519991488 @default.
- W4381137085 hasConcept C79974875 @default.
- W4381137085 hasConceptScore W4381137085C110875604 @default.
- W4381137085 hasConceptScore W4381137085C111919701 @default.
- W4381137085 hasConceptScore W4381137085C119857082 @default.
- W4381137085 hasConceptScore W4381137085C12267149 @default.
- W4381137085 hasConceptScore W4381137085C124101348 @default.
- W4381137085 hasConceptScore W4381137085C136764020 @default.
- W4381137085 hasConceptScore W4381137085C154945302 @default.
- W4381137085 hasConceptScore W4381137085C35525427 @default.
- W4381137085 hasConceptScore W4381137085C38652104 @default.
- W4381137085 hasConceptScore W4381137085C41008148 @default.
- W4381137085 hasConceptScore W4381137085C519991488 @default.
- W4381137085 hasConceptScore W4381137085C79974875 @default.
- W4381137085 hasLocation W43811370851 @default.
- W4381137085 hasOpenAccess W4381137085 @default.
- W4381137085 hasPrimaryLocation W43811370851 @default.
- W4381137085 hasRelatedWork W1996541855 @default.
- W4381137085 hasRelatedWork W2798481441 @default.
- W4381137085 hasRelatedWork W2937631562 @default.
- W4381137085 hasRelatedWork W2979979539 @default.
- W4381137085 hasRelatedWork W3194539120 @default.
- W4381137085 hasRelatedWork W3195168932 @default.
- W4381137085 hasRelatedWork W4361795583 @default.
- W4381137085 hasRelatedWork W4377230265 @default.
- W4381137085 hasRelatedWork W16836940 @default.
- W4381137085 hasRelatedWork W214962301 @default.
- W4381137085 isParatext "false" @default.
- W4381137085 isRetracted "false" @default.
- W4381137085 workType "article" @default.