Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381158022> ?p ?o ?g. }
- W4381158022 abstract "MicroCT of the three-dimensional fascicular organization of the human vagus nerve provides essential data to inform basic anatomy as well as the development and optimization of neuromodulation therapies. To process the images into usable formats for subsequent analysis and computational modeling, the fascicles must be segmented. Prior segmentations were completed manually due to the complex nature of the images, including variable contrast between tissue types and staining artifacts.Here, we developed a U-Net convolutional neural network (CNN) to automate segmentation of fascicles in microCT of human vagus nerve.The U-Net segmentation of ~500 images spanning one cervical vagus nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly four orders of magnitude faster. The automated segmentations had a Dice coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and accurate segmentation. While Dice coefficients are a commonly used metric to assess segmentation performance, we also adapted a metric to assess fascicle-wise detection accuracy, which showed that our network accurately detects the majority of fascicles, but may under-detect smaller fascicles.This network and the associated performance metrics set a benchmark, using a standard U-Net CNN, for the application of deep-learning algorithms to segment fascicles from microCT images. The process may be further optimized by refining tissue staining methods, modifying network architecture, and expanding the ground-truth training data. The resulting three-dimensional segmentations of the human vagus nerve will provide unprecedented accuracy to define nerve morphology in computational models for the analysis and design of neuromodulation therapies." @default.
- W4381158022 created "2023-06-20" @default.
- W4381158022 creator A5007700287 @default.
- W4381158022 creator A5007882747 @default.
- W4381158022 creator A5016519698 @default.
- W4381158022 creator A5034440023 @default.
- W4381158022 creator A5046566595 @default.
- W4381158022 creator A5046811880 @default.
- W4381158022 creator A5049857274 @default.
- W4381158022 creator A5059314323 @default.
- W4381158022 creator A5066366331 @default.
- W4381158022 creator A5084834557 @default.
- W4381158022 creator A5086264408 @default.
- W4381158022 date "2023-05-10" @default.
- W4381158022 modified "2023-09-27" @default.
- W4381158022 title "Deep-learning segmentation of fascicles from microCT of the human vagus nerve" @default.
- W4381158022 cites W1680797894 @default.
- W4381158022 cites W1901129140 @default.
- W4381158022 cites W1994380628 @default.
- W4381158022 cites W1998978972 @default.
- W4381158022 cites W2045539717 @default.
- W4381158022 cites W2066366977 @default.
- W4381158022 cites W2094180230 @default.
- W4381158022 cites W2102899650 @default.
- W4381158022 cites W2145685643 @default.
- W4381158022 cites W2169567979 @default.
- W4381158022 cites W2592905743 @default.
- W4381158022 cites W2599340422 @default.
- W4381158022 cites W2790416725 @default.
- W4381158022 cites W2891087830 @default.
- W4381158022 cites W2898529289 @default.
- W4381158022 cites W2913559493 @default.
- W4381158022 cites W2961912654 @default.
- W4381158022 cites W2962949934 @default.
- W4381158022 cites W2989166508 @default.
- W4381158022 cites W3002669799 @default.
- W4381158022 cites W3007271119 @default.
- W4381158022 cites W3011886827 @default.
- W4381158022 cites W3017368524 @default.
- W4381158022 cites W3024754342 @default.
- W4381158022 cites W3034396853 @default.
- W4381158022 cites W3086189541 @default.
- W4381158022 cites W3095110852 @default.
- W4381158022 cites W3101612813 @default.
- W4381158022 cites W3111521801 @default.
- W4381158022 cites W3112701542 @default.
- W4381158022 cites W3121813218 @default.
- W4381158022 cites W3128815104 @default.
- W4381158022 cites W3136078208 @default.
- W4381158022 cites W3140854437 @default.
- W4381158022 cites W3174278278 @default.
- W4381158022 cites W3190606213 @default.
- W4381158022 cites W3197217416 @default.
- W4381158022 cites W3204932029 @default.
- W4381158022 cites W4210352025 @default.
- W4381158022 cites W4214754605 @default.
- W4381158022 cites W4220819027 @default.
- W4381158022 cites W4291014861 @default.
- W4381158022 cites W4292177902 @default.
- W4381158022 cites W4297983768 @default.
- W4381158022 cites W4316926648 @default.
- W4381158022 cites W4319661877 @default.
- W4381158022 cites W4323309632 @default.
- W4381158022 cites W4324134283 @default.
- W4381158022 cites W4367679064 @default.
- W4381158022 cites W4378803142 @default.
- W4381158022 doi "https://doi.org/10.3389/fnins.2023.1169187" @default.
- W4381158022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37332862" @default.
- W4381158022 hasPublicationYear "2023" @default.
- W4381158022 type Work @default.
- W4381158022 citedByCount "0" @default.
- W4381158022 crossrefType "journal-article" @default.
- W4381158022 hasAuthorship W4381158022A5007700287 @default.
- W4381158022 hasAuthorship W4381158022A5007882747 @default.
- W4381158022 hasAuthorship W4381158022A5016519698 @default.
- W4381158022 hasAuthorship W4381158022A5034440023 @default.
- W4381158022 hasAuthorship W4381158022A5046566595 @default.
- W4381158022 hasAuthorship W4381158022A5046811880 @default.
- W4381158022 hasAuthorship W4381158022A5049857274 @default.
- W4381158022 hasAuthorship W4381158022A5059314323 @default.
- W4381158022 hasAuthorship W4381158022A5066366331 @default.
- W4381158022 hasAuthorship W4381158022A5084834557 @default.
- W4381158022 hasAuthorship W4381158022A5086264408 @default.
- W4381158022 hasBestOaLocation W43811580221 @default.
- W4381158022 hasConcept C105702510 @default.
- W4381158022 hasConcept C108583219 @default.
- W4381158022 hasConcept C110537703 @default.
- W4381158022 hasConcept C111919701 @default.
- W4381158022 hasConcept C146849305 @default.
- W4381158022 hasConcept C153180895 @default.
- W4381158022 hasConcept C154945302 @default.
- W4381158022 hasConcept C162324750 @default.
- W4381158022 hasConcept C176217482 @default.
- W4381158022 hasConcept C21547014 @default.
- W4381158022 hasConcept C31972630 @default.
- W4381158022 hasConcept C41008148 @default.
- W4381158022 hasConcept C71924100 @default.
- W4381158022 hasConcept C81363708 @default.
- W4381158022 hasConcept C89600930 @default.
- W4381158022 hasConcept C98045186 @default.