Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381158035> ?p ?o ?g. }
- W4381158035 endingPage "2129" @default.
- W4381158035 startingPage "2116" @default.
- W4381158035 abstract "Purpose This work was aimed at proposing a supervised learning‐based method that directly synthesizes contrast‐weighted images from the Magnetic Resonance Fingerprinting (MRF) data without performing quantitative mapping and spin‐dynamics simulations. Methods To implement our direct contrast synthesis (DCS) method, we deploy a conditional generative adversarial network (GAN) framework with a multi‐branch U‐Net as the generator and a multilayer CNN (PatchGAN) as the discriminator. We refer to our proposed approach as N‐DCSNet . The input MRF data are used to directly synthesize T1‐weighted, T2‐weighted, and fluid‐attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo‐based contrast‐weighted scans. The performance of our proposed method is demonstrated on in vivo MRF scans from healthy volunteers. Quantitative metrics, including normalized root mean square error (nRMSE), peak signal‐to‐noise ratio (PSNR), structural similarity (SSIM), learned perceptual image patch similarity (LPIPS), and Fréchet inception distance (FID), were used to evaluate the performance of the proposed method and compare it with others. Results In‐vivo experiments demonstrated excellent image quality with respect to that of simulation‐based contrast synthesis and previous DCS methods, both visually and according to quantitative metrics. We also demonstrate cases in which our trained model is able to mitigate the in‐flow and spiral off‐resonance artifacts typically seen in MRF reconstructions, and thus more faithfully represent conventional spin echo‐based contrast‐weighted images. Conclusion We present N‐DCSNet to directly synthesize high‐fidelity multicontrast MR images from a single MRF acquisition. This method can significantly decrease examination time. By directly training a network to generate contrast‐weighted images, our method does not require any model‐based simulation and therefore can avoid reconstruction errors due to dictionary matching and contrast simulation (code available at: https://github.com/mikgroup/DCSNet )." @default.
- W4381158035 created "2023-06-20" @default.
- W4381158035 creator A5012233452 @default.
- W4381158035 creator A5037774294 @default.
- W4381158035 creator A5042014034 @default.
- W4381158035 creator A5056163027 @default.
- W4381158035 creator A5068876416 @default.
- W4381158035 creator A5082172202 @default.
- W4381158035 creator A5082297273 @default.
- W4381158035 creator A5086133730 @default.
- W4381158035 creator A5090879904 @default.
- W4381158035 date "2023-06-18" @default.
- W4381158035 modified "2023-10-12" @default.
- W4381158035 title "High‐fidelity direct contrast synthesis from magnetic resonance fingerprinting" @default.
- W4381158035 cites W1510815927 @default.
- W4381158035 cites W1874840714 @default.
- W4381158035 cites W1963427860 @default.
- W4381158035 cites W1971571088 @default.
- W4381158035 cites W2021925329 @default.
- W4381158035 cites W2098743356 @default.
- W4381158035 cites W2108598243 @default.
- W4381158035 cites W2123328938 @default.
- W4381158035 cites W2133665775 @default.
- W4381158035 cites W2144288697 @default.
- W4381158035 cites W2297755274 @default.
- W4381158035 cites W2320583954 @default.
- W4381158035 cites W2326925005 @default.
- W4381158035 cites W2331128040 @default.
- W4381158035 cites W2332968321 @default.
- W4381158035 cites W2481002118 @default.
- W4381158035 cites W2606182999 @default.
- W4381158035 cites W2608930246 @default.
- W4381158035 cites W2618530766 @default.
- W4381158035 cites W2745006834 @default.
- W4381158035 cites W2748563428 @default.
- W4381158035 cites W2797196654 @default.
- W4381158035 cites W2902115733 @default.
- W4381158035 cites W2909266217 @default.
- W4381158035 cites W2912173845 @default.
- W4381158035 cites W2914057844 @default.
- W4381158035 cites W2919094402 @default.
- W4381158035 cites W2946077982 @default.
- W4381158035 cites W2962785568 @default.
- W4381158035 cites W2962793481 @default.
- W4381158035 cites W2963073614 @default.
- W4381158035 cites W2963768110 @default.
- W4381158035 cites W3006755272 @default.
- W4381158035 cites W3015340265 @default.
- W4381158035 cites W3037928162 @default.
- W4381158035 cites W3096831136 @default.
- W4381158035 cites W3101123465 @default.
- W4381158035 cites W3102986501 @default.
- W4381158035 cites W3176466780 @default.
- W4381158035 cites W3198778125 @default.
- W4381158035 cites W3210599432 @default.
- W4381158035 cites W4221051856 @default.
- W4381158035 doi "https://doi.org/10.1002/mrm.29766" @default.
- W4381158035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37332200" @default.
- W4381158035 hasPublicationYear "2023" @default.
- W4381158035 type Work @default.
- W4381158035 citedByCount "1" @default.
- W4381158035 countsByYear W43811580352023 @default.
- W4381158035 crossrefType "journal-article" @default.
- W4381158035 hasAuthorship W4381158035A5012233452 @default.
- W4381158035 hasAuthorship W4381158035A5037774294 @default.
- W4381158035 hasAuthorship W4381158035A5042014034 @default.
- W4381158035 hasAuthorship W4381158035A5056163027 @default.
- W4381158035 hasAuthorship W4381158035A5068876416 @default.
- W4381158035 hasAuthorship W4381158035A5082172202 @default.
- W4381158035 hasAuthorship W4381158035A5082297273 @default.
- W4381158035 hasAuthorship W4381158035A5086133730 @default.
- W4381158035 hasAuthorship W4381158035A5090879904 @default.
- W4381158035 hasBestOaLocation W43811580352 @default.
- W4381158035 hasConcept C103278499 @default.
- W4381158035 hasConcept C115961682 @default.
- W4381158035 hasConcept C153180895 @default.
- W4381158035 hasConcept C154945302 @default.
- W4381158035 hasConcept C162324750 @default.
- W4381158035 hasConcept C176217482 @default.
- W4381158035 hasConcept C21547014 @default.
- W4381158035 hasConcept C2776502983 @default.
- W4381158035 hasConcept C2779803651 @default.
- W4381158035 hasConcept C31972630 @default.
- W4381158035 hasConcept C41008148 @default.
- W4381158035 hasConcept C55020928 @default.
- W4381158035 hasConcept C76155785 @default.
- W4381158035 hasConcept C94915269 @default.
- W4381158035 hasConceptScore W4381158035C103278499 @default.
- W4381158035 hasConceptScore W4381158035C115961682 @default.
- W4381158035 hasConceptScore W4381158035C153180895 @default.
- W4381158035 hasConceptScore W4381158035C154945302 @default.
- W4381158035 hasConceptScore W4381158035C162324750 @default.
- W4381158035 hasConceptScore W4381158035C176217482 @default.
- W4381158035 hasConceptScore W4381158035C21547014 @default.
- W4381158035 hasConceptScore W4381158035C2776502983 @default.
- W4381158035 hasConceptScore W4381158035C2779803651 @default.
- W4381158035 hasConceptScore W4381158035C31972630 @default.
- W4381158035 hasConceptScore W4381158035C41008148 @default.