Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381162811> ?p ?o ?g. }
- W4381162811 endingPage "107175" @default.
- W4381162811 startingPage "107175" @default.
- W4381162811 abstract "Truck-involved crashes, especially truck-car crashes, are associated with serious and even fatal injuries, thus necessitating an in-depth analysis. Prior research focused solely on examining the injury severity of truck drivers or developed separate performance models for truck and car drivers. However, the severity of injuries to both drivers in the same truck-car crash may be interrelated, and influencing factors of injury severities sustained by the two parties may differ. To address these concerns, a random parameter bivariate probit model with heterogeneity in means (RPBPHM) is applied to examine factors affecting the injury severity of both drivers in the same truck-car crash and how these factors change over the years. Using truck-car crash data from 2017 to 2019 in the UK, the dependent variable is defined as slight injury and serious injury or fatality. Factors such as driver, vehicle, road, and environmental characteristics are statistically analyzed in this study. According to the findings, the RPBPHM model demonstrated a remarkable statistical fit, and a positive correlation was observed between the two drivers' injury severity in truck-car crashes. More importantly, the effects of the explanatory factors showing relatively temporal stability vary across different types of vehicle crashes. For example, car driver improper actions and lane changing by trucks, have a significant interactive effect on the severity of injuries sustained by drivers involved collisions between trucks and cars. Male truck drivers, young truck drivers, older truck drivers, and truck drivers' improper actions, elevate the estimated odds of only truck drivers; while older car and unsignalized crossing increase the possibility of injury severity of only car drivers. Finally, due to shared unobserved crash-specific factors, the 30-mph speed limit, dark no lights, and head-on collision, significantly affect the severity of injuries sustained by drivers involved in collisions between trucks and cars. The modeling approach provides a novel framework for jointly analyzing truck-involved crash injury severities. The findings will help policymakers take the necessary actions to reduce truck-car crashes by implementing appropriate and accurate safety countermeasures." @default.
- W4381162811 created "2023-06-20" @default.
- W4381162811 creator A5034995152 @default.
- W4381162811 creator A5061104819 @default.
- W4381162811 creator A5074542180 @default.
- W4381162811 creator A5080275283 @default.
- W4381162811 creator A5084776757 @default.
- W4381162811 date "2023-09-01" @default.
- W4381162811 modified "2023-10-18" @default.
- W4381162811 title "Bivariate joint analysis of injury severity of drivers in truck-car crashes accommodating multilayer unobserved heterogeneity" @default.
- W4381162811 cites W1980399291 @default.
- W4381162811 cites W2010733489 @default.
- W4381162811 cites W2012838480 @default.
- W4381162811 cites W2024325291 @default.
- W4381162811 cites W2034306099 @default.
- W4381162811 cites W2061334190 @default.
- W4381162811 cites W2063584172 @default.
- W4381162811 cites W2096666614 @default.
- W4381162811 cites W2132735659 @default.
- W4381162811 cites W2137344397 @default.
- W4381162811 cites W2162776726 @default.
- W4381162811 cites W2195780797 @default.
- W4381162811 cites W2336427836 @default.
- W4381162811 cites W2343811890 @default.
- W4381162811 cites W2347779452 @default.
- W4381162811 cites W2469496323 @default.
- W4381162811 cites W2533353834 @default.
- W4381162811 cites W2566556479 @default.
- W4381162811 cites W2578267344 @default.
- W4381162811 cites W2594918460 @default.
- W4381162811 cites W2750077433 @default.
- W4381162811 cites W2752496418 @default.
- W4381162811 cites W2765174074 @default.
- W4381162811 cites W2789652150 @default.
- W4381162811 cites W2792545433 @default.
- W4381162811 cites W2800779943 @default.
- W4381162811 cites W2802908984 @default.
- W4381162811 cites W2886757594 @default.
- W4381162811 cites W2901672822 @default.
- W4381162811 cites W2936686278 @default.
- W4381162811 cites W2940333097 @default.
- W4381162811 cites W2945505839 @default.
- W4381162811 cites W2953710435 @default.
- W4381162811 cites W2956088716 @default.
- W4381162811 cites W2963543439 @default.
- W4381162811 cites W2992034134 @default.
- W4381162811 cites W2999144441 @default.
- W4381162811 cites W3003305444 @default.
- W4381162811 cites W3014795987 @default.
- W4381162811 cites W3016646498 @default.
- W4381162811 cites W3037342254 @default.
- W4381162811 cites W3037627730 @default.
- W4381162811 cites W3039504676 @default.
- W4381162811 cites W3043613665 @default.
- W4381162811 cites W3081762154 @default.
- W4381162811 cites W3094620555 @default.
- W4381162811 cites W3139170559 @default.
- W4381162811 cites W3160853735 @default.
- W4381162811 cites W3174143699 @default.
- W4381162811 cites W3199505245 @default.
- W4381162811 cites W3208510378 @default.
- W4381162811 cites W4200560806 @default.
- W4381162811 cites W4221012238 @default.
- W4381162811 cites W4224022527 @default.
- W4381162811 cites W4224912683 @default.
- W4381162811 cites W4296071612 @default.
- W4381162811 doi "https://doi.org/10.1016/j.aap.2023.107175" @default.
- W4381162811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37343458" @default.
- W4381162811 hasPublicationYear "2023" @default.
- W4381162811 type Work @default.
- W4381162811 citedByCount "3" @default.
- W4381162811 countsByYear W43811628112023 @default.
- W4381162811 crossrefType "journal-article" @default.
- W4381162811 hasAuthorship W4381162811A5034995152 @default.
- W4381162811 hasAuthorship W4381162811A5061104819 @default.
- W4381162811 hasAuthorship W4381162811A5074542180 @default.
- W4381162811 hasAuthorship W4381162811A5080275283 @default.
- W4381162811 hasAuthorship W4381162811A5084776757 @default.
- W4381162811 hasConcept C105795698 @default.
- W4381162811 hasConcept C127413603 @default.
- W4381162811 hasConcept C143095724 @default.
- W4381162811 hasConcept C151956035 @default.
- W4381162811 hasConcept C166735990 @default.
- W4381162811 hasConcept C171146098 @default.
- W4381162811 hasConcept C183469790 @default.
- W4381162811 hasConcept C190385971 @default.
- W4381162811 hasConcept C199360897 @default.
- W4381162811 hasConcept C22212356 @default.
- W4381162811 hasConcept C3017944768 @default.
- W4381162811 hasConcept C33923547 @default.
- W4381162811 hasConcept C41008148 @default.
- W4381162811 hasConcept C52121051 @default.
- W4381162811 hasConcept C64341305 @default.
- W4381162811 hasConcept C71924100 @default.
- W4381162811 hasConcept C99454951 @default.
- W4381162811 hasConceptScore W4381162811C105795698 @default.
- W4381162811 hasConceptScore W4381162811C127413603 @default.
- W4381162811 hasConceptScore W4381162811C143095724 @default.