Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381163597> ?p ?o ?g. }
- W4381163597 endingPage "63597" @default.
- W4381163597 startingPage "63579" @default.
- W4381163597 abstract "In software engineering community, defect prediction is one the active domain. For the software’s success, it is essential to reduce the software engineering and data-mining gap. Software defects prediction forecasts the source code errors before the testing phase. Methods for predicting software defects, such as clustering, statistical methods, mixed algorithms, metrics based on neural networks, black box testing, white box testing and machine learning are frequently used to explore the effect area in software. The main contribution of this research is the use of feature selection for the first time to increase the accuracy of machine learning classifiers in defects pre-diction. The objective of this study is to improve the defects prediction accuracy in five data sets of NASA namely; CM1, JM1, KC2, KC1, and PC1. These NASA data sets are open to public. In this research, the feature selection technique is use with machine-learning techniques; Random Forest, Logistic Regression, Multilayer Perceptron, Bayesian Net, Rule ZeroR, J48, Lazy IBK, Support Vector Machine, Neural Networks, and Decision Stump to achieve high defect prediction accuracy as compared to without feature selection (WOFS). The research workbench, a machine-learning tool called WEKA (Waikato Environment for Knowledge Analysis), is used to refine da-ta, preprocess data, and apply the mentioned classifiers. To assess statistical analyses, a mini tab statistical tool is used. The results of this study reveals that accuracy of defects prediction with feature selection (WFS) is improve in contrast with the accuracy of WOFS." @default.
- W4381163597 created "2023-06-20" @default.
- W4381163597 creator A5003815049 @default.
- W4381163597 creator A5012973079 @default.
- W4381163597 creator A5014111145 @default.
- W4381163597 creator A5028061014 @default.
- W4381163597 creator A5043100878 @default.
- W4381163597 creator A5079063323 @default.
- W4381163597 creator A5082481187 @default.
- W4381163597 creator A5090719760 @default.
- W4381163597 date "2023-01-01" @default.
- W4381163597 modified "2023-09-27" @default.
- W4381163597 title "A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning" @default.
- W4381163597 cites W1967211424 @default.
- W4381163597 cites W2013948839 @default.
- W4381163597 cites W2031227255 @default.
- W4381163597 cites W2053481403 @default.
- W4381163597 cites W2066085074 @default.
- W4381163597 cites W2112032657 @default.
- W4381163597 cites W2125975118 @default.
- W4381163597 cites W2131779699 @default.
- W4381163597 cites W2131987814 @default.
- W4381163597 cites W2140695747 @default.
- W4381163597 cites W2153344230 @default.
- W4381163597 cites W2316607221 @default.
- W4381163597 cites W2321477967 @default.
- W4381163597 cites W2327671165 @default.
- W4381163597 cites W2338334215 @default.
- W4381163597 cites W2395429379 @default.
- W4381163597 cites W2544961394 @default.
- W4381163597 cites W2765871070 @default.
- W4381163597 cites W2783138871 @default.
- W4381163597 cites W2783657687 @default.
- W4381163597 cites W2787337551 @default.
- W4381163597 cites W2787986668 @default.
- W4381163597 cites W2791315675 @default.
- W4381163597 cites W2795180912 @default.
- W4381163597 cites W2890333897 @default.
- W4381163597 cites W2911964244 @default.
- W4381163597 cites W2914103415 @default.
- W4381163597 cites W2914801588 @default.
- W4381163597 cites W2945339223 @default.
- W4381163597 cites W2964278775 @default.
- W4381163597 cites W2968996329 @default.
- W4381163597 cites W3006034509 @default.
- W4381163597 cites W3008381189 @default.
- W4381163597 cites W3039848812 @default.
- W4381163597 cites W3100326636 @default.
- W4381163597 cites W3105012514 @default.
- W4381163597 cites W3123396471 @default.
- W4381163597 cites W3135028703 @default.
- W4381163597 cites W3142764860 @default.
- W4381163597 cites W3199041797 @default.
- W4381163597 cites W4213363914 @default.
- W4381163597 cites W4235119084 @default.
- W4381163597 cites W4237539240 @default.
- W4381163597 cites W4281899332 @default.
- W4381163597 cites W4283759069 @default.
- W4381163597 cites W4285265519 @default.
- W4381163597 cites W4293414946 @default.
- W4381163597 cites W4366987828 @default.
- W4381163597 cites W4367052908 @default.
- W4381163597 cites W4377969723 @default.
- W4381163597 cites W784166158 @default.
- W4381163597 doi "https://doi.org/10.1109/access.2023.3287326" @default.
- W4381163597 hasPublicationYear "2023" @default.
- W4381163597 type Work @default.
- W4381163597 citedByCount "0" @default.
- W4381163597 crossrefType "journal-article" @default.
- W4381163597 hasAuthorship W4381163597A5003815049 @default.
- W4381163597 hasAuthorship W4381163597A5012973079 @default.
- W4381163597 hasAuthorship W4381163597A5014111145 @default.
- W4381163597 hasAuthorship W4381163597A5028061014 @default.
- W4381163597 hasAuthorship W4381163597A5043100878 @default.
- W4381163597 hasAuthorship W4381163597A5079063323 @default.
- W4381163597 hasAuthorship W4381163597A5082481187 @default.
- W4381163597 hasAuthorship W4381163597A5090719760 @default.
- W4381163597 hasBestOaLocation W43811635971 @default.
- W4381163597 hasConcept C1009929 @default.
- W4381163597 hasConcept C108583219 @default.
- W4381163597 hasConcept C119857082 @default.
- W4381163597 hasConcept C12267149 @default.
- W4381163597 hasConcept C124101348 @default.
- W4381163597 hasConcept C138885662 @default.
- W4381163597 hasConcept C148483581 @default.
- W4381163597 hasConcept C154945302 @default.
- W4381163597 hasConcept C169258074 @default.
- W4381163597 hasConcept C199360897 @default.
- W4381163597 hasConcept C2776401178 @default.
- W4381163597 hasConcept C2777904410 @default.
- W4381163597 hasConcept C2778827112 @default.
- W4381163597 hasConcept C41008148 @default.
- W4381163597 hasConcept C41895202 @default.
- W4381163597 hasConcept C50644808 @default.
- W4381163597 hasConcept C52001869 @default.
- W4381163597 hasConcept C60908668 @default.
- W4381163597 hasConcept C84525736 @default.
- W4381163597 hasConceptScore W4381163597C1009929 @default.