Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381167629> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4381167629 abstract "Abstract. The ionospheric sporadic E (Es) layer is the intense plasma irregularities between 80 and 130 km in altitude, which is generally unpredictable. Reconstructing the morphology of sporadic E layer is not only essential for understanding the nature of ionospheric irregularities and many other atmospheric coupling systems, but also useful to solve a broad range of demands for reliable radio communication of many sectors reliant on ionosphere-dependent decision-making. Despite the efforts of many empirical and theoretical models, a predictive algorithm with both high accuracy and high efficiency is still lacking. Here we introduce a new approach for Sporadic E Layer Forecast using Artificial Neural Networks (SELF-ANN). The prediction engine is trained by fusing observational data from multiple sources, including high-resolution ERA5 reanalysis dataset, COSMIC RO measurements, and integrated data from OMNI. The results show that the model can effectively reconstruct the morphology of the ionospheric E layer with intraseasonal variability by learning complex patterns. The model obtains good performance and generalization capability by applying multiple evaluation criteria. The random forest algorithm used for preliminary pro- cessing shows that local time, altitude, longitude, and latitude are significantly essential for forecasting the E-layer region. Extensive evaluations based on ground-based observations demonstrate the superior utility of the model in dealing with unknown information. The presented framework will help us better understand the nature of the ionospheric irregularities, which is a fundamental challenge in upper atmospheric and ionospheric physics. Moreover, the proposed SELF-ANN can provide a significant contribution to the development of the prediction of ionospheric irregularities in the E layer, particularly when the formation mechanisms and evolution processes of the Es layer are not well understood." @default.
- W4381167629 created "2023-06-20" @default.
- W4381167629 creator A5002850137 @default.
- W4381167629 creator A5004806597 @default.
- W4381167629 creator A5010181838 @default.
- W4381167629 creator A5025029726 @default.
- W4381167629 creator A5027462512 @default.
- W4381167629 creator A5073770686 @default.
- W4381167629 date "2023-06-19" @default.
- W4381167629 modified "2023-10-16" @default.
- W4381167629 title "Ionospheric Irregularities Reconstruction Using Multi-Source Data Fusion via Deep Learning" @default.
- W4381167629 doi "https://doi.org/10.5194/egusphere-2023-1304" @default.
- W4381167629 hasPublicationYear "2023" @default.
- W4381167629 type Work @default.
- W4381167629 citedByCount "0" @default.
- W4381167629 crossrefType "posted-content" @default.
- W4381167629 hasAuthorship W4381167629A5002850137 @default.
- W4381167629 hasAuthorship W4381167629A5004806597 @default.
- W4381167629 hasAuthorship W4381167629A5010181838 @default.
- W4381167629 hasAuthorship W4381167629A5025029726 @default.
- W4381167629 hasAuthorship W4381167629A5027462512 @default.
- W4381167629 hasAuthorship W4381167629A5073770686 @default.
- W4381167629 hasBestOaLocation W43811676291 @default.
- W4381167629 hasConcept C116403925 @default.
- W4381167629 hasConcept C127313418 @default.
- W4381167629 hasConcept C134306372 @default.
- W4381167629 hasConcept C154945302 @default.
- W4381167629 hasConcept C177148314 @default.
- W4381167629 hasConcept C2524010 @default.
- W4381167629 hasConcept C33923547 @default.
- W4381167629 hasConcept C41008148 @default.
- W4381167629 hasConcept C50644808 @default.
- W4381167629 hasConcept C62649853 @default.
- W4381167629 hasConcept C6350597 @default.
- W4381167629 hasConcept C8058405 @default.
- W4381167629 hasConceptScore W4381167629C116403925 @default.
- W4381167629 hasConceptScore W4381167629C127313418 @default.
- W4381167629 hasConceptScore W4381167629C134306372 @default.
- W4381167629 hasConceptScore W4381167629C154945302 @default.
- W4381167629 hasConceptScore W4381167629C177148314 @default.
- W4381167629 hasConceptScore W4381167629C2524010 @default.
- W4381167629 hasConceptScore W4381167629C33923547 @default.
- W4381167629 hasConceptScore W4381167629C41008148 @default.
- W4381167629 hasConceptScore W4381167629C50644808 @default.
- W4381167629 hasConceptScore W4381167629C62649853 @default.
- W4381167629 hasConceptScore W4381167629C6350597 @default.
- W4381167629 hasConceptScore W4381167629C8058405 @default.
- W4381167629 hasLocation W43811676291 @default.
- W4381167629 hasOpenAccess W4381167629 @default.
- W4381167629 hasPrimaryLocation W43811676291 @default.
- W4381167629 hasRelatedWork W1493358506 @default.
- W4381167629 hasRelatedWork W1591671037 @default.
- W4381167629 hasRelatedWork W1971541091 @default.
- W4381167629 hasRelatedWork W2081052339 @default.
- W4381167629 hasRelatedWork W2358326011 @default.
- W4381167629 hasRelatedWork W2385643646 @default.
- W4381167629 hasRelatedWork W2386387936 @default.
- W4381167629 hasRelatedWork W2784190598 @default.
- W4381167629 hasRelatedWork W2885094885 @default.
- W4381167629 hasRelatedWork W4206697580 @default.
- W4381167629 isParatext "false" @default.
- W4381167629 isRetracted "false" @default.
- W4381167629 workType "article" @default.