Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381186221> ?p ?o ?g. }
- W4381186221 endingPage "106470" @default.
- W4381186221 startingPage "106470" @default.
- W4381186221 abstract "Machine learning techniques can predict the compressive strength of cement-based materials with good accuracy and learning capacity. Traditional compressive strength prediction according to machine learning techniques such as the support vector machine (SVM), decision tree, and Gaussian regression are normally based on the mix proportion of concrete compositions. Resistivity can realize the long-term, real-time and in-situ monitoring of compressive strength of the concrete structures. Therefore, electrical resistivity is regarded as a key nondestructive testing parameter to improve the accuracy of the compressive strength prediction model according to machine learning techniques in this study. When the resistivity was taken into consideration as an input variable accounting for 0.166, the fitting degree of the compressive strength in the decision trees model is increased from 0.77 to 0.79. In the SVM model, the fitting degree remains 0.79, the RMSE decreases from 8.490 to 8.335, which indicates the reliability is improved. The fitting degree in the Gaussian model model is increased from 0.81 to 0.82. As a new parameter variable, the accuracy of the compressive strength prediction model modified with electrical resistivity can be significantly increased. Therefore, the nondestructive testing method can be combined with machine learning techniques to promote the development of civil engineering building structure monitoring, diagnosis and facilitate the development of intelligent buildings through data-driven approaches." @default.
- W4381186221 created "2023-06-20" @default.
- W4381186221 creator A5003474583 @default.
- W4381186221 creator A5019682573 @default.
- W4381186221 creator A5041868597 @default.
- W4381186221 creator A5077078314 @default.
- W4381186221 creator A5082316322 @default.
- W4381186221 creator A5089947572 @default.
- W4381186221 creator A5090954943 @default.
- W4381186221 date "2023-08-01" @default.
- W4381186221 modified "2023-09-27" @default.
- W4381186221 title "Machine learning prediction of compressive strength of concrete with resistivity modification" @default.
- W4381186221 cites W1983453301 @default.
- W4381186221 cites W1998253841 @default.
- W4381186221 cites W2007599093 @default.
- W4381186221 cites W2031897272 @default.
- W4381186221 cites W2038398046 @default.
- W4381186221 cites W2088053778 @default.
- W4381186221 cites W2094825736 @default.
- W4381186221 cites W2171308009 @default.
- W4381186221 cites W2381833464 @default.
- W4381186221 cites W2557686487 @default.
- W4381186221 cites W2621888941 @default.
- W4381186221 cites W2801822775 @default.
- W4381186221 cites W2888558859 @default.
- W4381186221 cites W2922448744 @default.
- W4381186221 cites W2976353133 @default.
- W4381186221 cites W3046169907 @default.
- W4381186221 cites W3107242961 @default.
- W4381186221 cites W3111511266 @default.
- W4381186221 cites W3119378212 @default.
- W4381186221 cites W3127879965 @default.
- W4381186221 cites W3156986283 @default.
- W4381186221 cites W3167921846 @default.
- W4381186221 cites W3170270520 @default.
- W4381186221 cites W3190934455 @default.
- W4381186221 cites W3192537868 @default.
- W4381186221 cites W3207121895 @default.
- W4381186221 cites W3208846419 @default.
- W4381186221 cites W3213297364 @default.
- W4381186221 cites W3215296488 @default.
- W4381186221 cites W3215871021 @default.
- W4381186221 cites W4200145008 @default.
- W4381186221 cites W4210543791 @default.
- W4381186221 cites W4210750266 @default.
- W4381186221 cites W4212929279 @default.
- W4381186221 cites W4220823708 @default.
- W4381186221 cites W4280495058 @default.
- W4381186221 cites W4291295751 @default.
- W4381186221 cites W4292689997 @default.
- W4381186221 cites W4293523269 @default.
- W4381186221 cites W4297537419 @default.
- W4381186221 cites W4306702243 @default.
- W4381186221 cites W4307059239 @default.
- W4381186221 cites W4309773403 @default.
- W4381186221 cites W4312319778 @default.
- W4381186221 cites W4313411108 @default.
- W4381186221 cites W4317494559 @default.
- W4381186221 doi "https://doi.org/10.1016/j.mtcomm.2023.106470" @default.
- W4381186221 hasPublicationYear "2023" @default.
- W4381186221 type Work @default.
- W4381186221 citedByCount "0" @default.
- W4381186221 crossrefType "journal-article" @default.
- W4381186221 hasAuthorship W4381186221A5003474583 @default.
- W4381186221 hasAuthorship W4381186221A5019682573 @default.
- W4381186221 hasAuthorship W4381186221A5041868597 @default.
- W4381186221 hasAuthorship W4381186221A5077078314 @default.
- W4381186221 hasAuthorship W4381186221A5082316322 @default.
- W4381186221 hasAuthorship W4381186221A5089947572 @default.
- W4381186221 hasAuthorship W4381186221A5090954943 @default.
- W4381186221 hasConcept C119599485 @default.
- W4381186221 hasConcept C119857082 @default.
- W4381186221 hasConcept C12267149 @default.
- W4381186221 hasConcept C127413603 @default.
- W4381186221 hasConcept C154945302 @default.
- W4381186221 hasConcept C159985019 @default.
- W4381186221 hasConcept C192562407 @default.
- W4381186221 hasConcept C30407753 @default.
- W4381186221 hasConcept C41008148 @default.
- W4381186221 hasConcept C69990965 @default.
- W4381186221 hasConcept C84525736 @default.
- W4381186221 hasConceptScore W4381186221C119599485 @default.
- W4381186221 hasConceptScore W4381186221C119857082 @default.
- W4381186221 hasConceptScore W4381186221C12267149 @default.
- W4381186221 hasConceptScore W4381186221C127413603 @default.
- W4381186221 hasConceptScore W4381186221C154945302 @default.
- W4381186221 hasConceptScore W4381186221C159985019 @default.
- W4381186221 hasConceptScore W4381186221C192562407 @default.
- W4381186221 hasConceptScore W4381186221C30407753 @default.
- W4381186221 hasConceptScore W4381186221C41008148 @default.
- W4381186221 hasConceptScore W4381186221C69990965 @default.
- W4381186221 hasConceptScore W4381186221C84525736 @default.
- W4381186221 hasLocation W43811862211 @default.
- W4381186221 hasOpenAccess W4381186221 @default.
- W4381186221 hasPrimaryLocation W43811862211 @default.
- W4381186221 hasRelatedWork W1470425429 @default.
- W4381186221 hasRelatedWork W1996541855 @default.
- W4381186221 hasRelatedWork W3186233728 @default.