Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381194997> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4381194997 endingPage "112" @default.
- W4381194997 startingPage "94" @default.
- W4381194997 abstract "Following up on previous studies of the Big Data phenomenon and its impact on the field of law, the article examines the advantages and disadvantages of using correlations which can compete with establishing causality in making legally significant decisions. The author draws attention to the fact that correlations based on Big Data help to analyse objects and phenomena not by clarifying the fundamental principles of their internal structure, but by revealing useful statistical patterns which may not be related to causality, but which are quite sufficient in a significant number of cases. It has been shown that such correlations can influence decisions made by a person, supplement arguments to justify decisions made by a person, or contradict decisions made by a person based on his or her knowledge and experience. Correlations can be useful in those areas of law where statistical analysis is effective, and their calculation is carried out on the basis of mathematical and statistical methods with greater speed and efficiency, as well as with lower costs than establishing causation. The author argues that since correlations are not conclusive evidence of causation, they should be used in conjunction with other types of evidence and appropriate legal argumentation. Correlations should not take precedence over other evidence or arguments. Attention is drawn to the danger of the dictatorship of Big Data, when data or correlations may be given more meaning and significance than anything else, when the fascination with correlations based on non-transparent algorithms can lead to critical abuses. The author proposes to provide safeguards to protect against the use of conclusions based on correlations for all persons who may, due to algorithmic and other shortcomings, be subjected to harassment, harm or other violation of their rights and freedoms, and to establish a hierarchy between causation and correlation based on the accuracy criterion as follows 1) correlation (lower accuracy, one of the prerequisites for establishing causation); 2) causation (higher accuracy, which may be based on correlation). The author argues that it is necessary to be prepared for the onset of the Big Data era on the fundamental principle of presumption of innocence at a time when the worldview based on the basis of finding out the cause may slowly give way to the worldview based on Big Data and correlations." @default.
- W4381194997 created "2023-06-20" @default.
- W4381194997 creator A5075824199 @default.
- W4381194997 date "2023-05-30" @default.
- W4381194997 modified "2023-09-27" @default.
- W4381194997 title "Big Data: correlations and causality (criminal law aspect)" @default.
- W4381194997 doi "https://doi.org/10.37750/2616-6798.2023.2(45).282328" @default.
- W4381194997 hasPublicationYear "2023" @default.
- W4381194997 type Work @default.
- W4381194997 citedByCount "0" @default.
- W4381194997 crossrefType "journal-article" @default.
- W4381194997 hasAuthorship W4381194997A5075824199 @default.
- W4381194997 hasBestOaLocation W43811949971 @default.
- W4381194997 hasConcept C111472728 @default.
- W4381194997 hasConcept C118084267 @default.
- W4381194997 hasConcept C121332964 @default.
- W4381194997 hasConcept C138885662 @default.
- W4381194997 hasConcept C15744967 @default.
- W4381194997 hasConcept C162324750 @default.
- W4381194997 hasConcept C166151441 @default.
- W4381194997 hasConcept C17744445 @default.
- W4381194997 hasConcept C199539241 @default.
- W4381194997 hasConcept C2780876879 @default.
- W4381194997 hasConcept C50335755 @default.
- W4381194997 hasConcept C62520636 @default.
- W4381194997 hasConcept C64357122 @default.
- W4381194997 hasConcept C65059942 @default.
- W4381194997 hasConceptScore W4381194997C111472728 @default.
- W4381194997 hasConceptScore W4381194997C118084267 @default.
- W4381194997 hasConceptScore W4381194997C121332964 @default.
- W4381194997 hasConceptScore W4381194997C138885662 @default.
- W4381194997 hasConceptScore W4381194997C15744967 @default.
- W4381194997 hasConceptScore W4381194997C162324750 @default.
- W4381194997 hasConceptScore W4381194997C166151441 @default.
- W4381194997 hasConceptScore W4381194997C17744445 @default.
- W4381194997 hasConceptScore W4381194997C199539241 @default.
- W4381194997 hasConceptScore W4381194997C2780876879 @default.
- W4381194997 hasConceptScore W4381194997C50335755 @default.
- W4381194997 hasConceptScore W4381194997C62520636 @default.
- W4381194997 hasConceptScore W4381194997C64357122 @default.
- W4381194997 hasConceptScore W4381194997C65059942 @default.
- W4381194997 hasIssue "2(45)" @default.
- W4381194997 hasLocation W43811949971 @default.
- W4381194997 hasOpenAccess W4381194997 @default.
- W4381194997 hasPrimaryLocation W43811949971 @default.
- W4381194997 hasRelatedWork W1823660428 @default.
- W4381194997 hasRelatedWork W2014011059 @default.
- W4381194997 hasRelatedWork W2091583391 @default.
- W4381194997 hasRelatedWork W2361322170 @default.
- W4381194997 hasRelatedWork W3143006040 @default.
- W4381194997 hasRelatedWork W3174031226 @default.
- W4381194997 hasRelatedWork W3178172232 @default.
- W4381194997 hasRelatedWork W3209276291 @default.
- W4381194997 hasRelatedWork W4223931458 @default.
- W4381194997 hasRelatedWork W64447656 @default.
- W4381194997 isParatext "false" @default.
- W4381194997 isRetracted "false" @default.
- W4381194997 workType "article" @default.