Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381252227> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4381252227 endingPage "2719" @default.
- W4381252227 startingPage "2719" @default.
- W4381252227 abstract "A full connected world is expected to be introduced in the sixth generation mobile network (6G). As a typical fully connected scenario, the internet of vehicle (IoV) enables intelligent vehicle operations via artificial intelligence (AI) and edge computing technologies. Thus, integrating intelligence into edge computing is, no doubt, a promising development trend. In the future of vehicular networks, a massive variety of services need powerful computing resources and higher quality of service (QoS). Existing computing resources are insufficient to match those increasing requirements. Most works on this problem focused on finding the power-delay’s trade-off, ignoring QoS and stable load balance. In this study, we found that the computing power and redundancy of vehicles’ in IoV is increasing. So, those redundant computing resources are possible to be used to solve the shortage of computing resource. CNN is a typical AI technique. This technology is very suitable for solving the problems in this article. So, we adopted CNN technique of AI to design and algorithm of convolutional long short-term memory (CN_LSTM) based traffic prediction (ACLBTP). ACLBTP was designed to gain the predicted number of vehicles belonging to the edge node. Secondly, according to the problem of insufficient computing resources on remote servers, we found that a large amount of redundant computing resources exist in edge nodes. So, we used edge computing technique to solve the problem of insufficient computing resources on remote servers. ASOBCL was designed to distribute computing tasks to edge nodes. Meanwhile, an intelligent service offloading framework was provided in this article. Based on the framework, an algorithm of improved gradient descent (AIGD) was created to accelerate the speed of iteration. So, the ACLBTP’s convergence of convolutional neural network (CNN) based on AIGD was able to be accelerated too. In ASOBCL, a sorting technique was adopted to speed up the offloading work. Simulation results demonstrated the fact that the prediction strategy designed in this paper had high accuracy. The low offloading time and maintaining stable load balance were gained via running ASOBCL. Low offloading time means short response time. Additionally, the QoS was guaranteed. So, these strategies designed in this paper were effective and valuable." @default.
- W4381252227 created "2023-06-20" @default.
- W4381252227 creator A5038142481 @default.
- W4381252227 creator A5040205022 @default.
- W4381252227 creator A5060063187 @default.
- W4381252227 creator A5061307388 @default.
- W4381252227 creator A5088661712 @default.
- W4381252227 date "2023-06-17" @default.
- W4381252227 modified "2023-09-26" @default.
- W4381252227 title "An AI-Enhanced Strategy of Service Offloading for IoV in Mobile Edge Computing" @default.
- W4381252227 cites W2553698314 @default.
- W4381252227 cites W2790588927 @default.
- W4381252227 cites W2806813423 @default.
- W4381252227 cites W2911692934 @default.
- W4381252227 cites W2914899603 @default.
- W4381252227 cites W2922728125 @default.
- W4381252227 cites W2948319758 @default.
- W4381252227 cites W2962788286 @default.
- W4381252227 cites W2976882027 @default.
- W4381252227 cites W2977597001 @default.
- W4381252227 cites W2979987893 @default.
- W4381252227 cites W2984923198 @default.
- W4381252227 cites W3004133675 @default.
- W4381252227 cites W3006541201 @default.
- W4381252227 cites W3016146955 @default.
- W4381252227 cites W3022191833 @default.
- W4381252227 cites W3113054364 @default.
- W4381252227 cites W3118929245 @default.
- W4381252227 cites W3128034093 @default.
- W4381252227 cites W3135344605 @default.
- W4381252227 cites W3136475158 @default.
- W4381252227 cites W3191190194 @default.
- W4381252227 cites W4246271511 @default.
- W4381252227 cites W4253521989 @default.
- W4381252227 cites W4283710704 @default.
- W4381252227 doi "https://doi.org/10.3390/electronics12122719" @default.
- W4381252227 hasPublicationYear "2023" @default.
- W4381252227 type Work @default.
- W4381252227 citedByCount "0" @default.
- W4381252227 crossrefType "journal-article" @default.
- W4381252227 hasAuthorship W4381252227A5038142481 @default.
- W4381252227 hasAuthorship W4381252227A5040205022 @default.
- W4381252227 hasAuthorship W4381252227A5060063187 @default.
- W4381252227 hasAuthorship W4381252227A5061307388 @default.
- W4381252227 hasAuthorship W4381252227A5088661712 @default.
- W4381252227 hasBestOaLocation W43812522271 @default.
- W4381252227 hasConcept C111919701 @default.
- W4381252227 hasConcept C120314980 @default.
- W4381252227 hasConcept C152124472 @default.
- W4381252227 hasConcept C154945302 @default.
- W4381252227 hasConcept C162307627 @default.
- W4381252227 hasConcept C184842701 @default.
- W4381252227 hasConcept C2776061582 @default.
- W4381252227 hasConcept C2778456923 @default.
- W4381252227 hasConcept C31258907 @default.
- W4381252227 hasConcept C41008148 @default.
- W4381252227 hasConcept C5119721 @default.
- W4381252227 hasConcept C79974875 @default.
- W4381252227 hasConcept C85106507 @default.
- W4381252227 hasConcept C93996380 @default.
- W4381252227 hasConceptScore W4381252227C111919701 @default.
- W4381252227 hasConceptScore W4381252227C120314980 @default.
- W4381252227 hasConceptScore W4381252227C152124472 @default.
- W4381252227 hasConceptScore W4381252227C154945302 @default.
- W4381252227 hasConceptScore W4381252227C162307627 @default.
- W4381252227 hasConceptScore W4381252227C184842701 @default.
- W4381252227 hasConceptScore W4381252227C2776061582 @default.
- W4381252227 hasConceptScore W4381252227C2778456923 @default.
- W4381252227 hasConceptScore W4381252227C31258907 @default.
- W4381252227 hasConceptScore W4381252227C41008148 @default.
- W4381252227 hasConceptScore W4381252227C5119721 @default.
- W4381252227 hasConceptScore W4381252227C79974875 @default.
- W4381252227 hasConceptScore W4381252227C85106507 @default.
- W4381252227 hasConceptScore W4381252227C93996380 @default.
- W4381252227 hasIssue "12" @default.
- W4381252227 hasLocation W43812522271 @default.
- W4381252227 hasOpenAccess W4381252227 @default.
- W4381252227 hasPrimaryLocation W43812522271 @default.
- W4381252227 hasRelatedWork W2765680238 @default.
- W4381252227 hasRelatedWork W2945616868 @default.
- W4381252227 hasRelatedWork W3046945740 @default.
- W4381252227 hasRelatedWork W3206647062 @default.
- W4381252227 hasRelatedWork W4226427977 @default.
- W4381252227 hasRelatedWork W4281293975 @default.
- W4381252227 hasRelatedWork W4297093186 @default.
- W4381252227 hasRelatedWork W4321462912 @default.
- W4381252227 hasRelatedWork W4367011799 @default.
- W4381252227 hasRelatedWork W4382053164 @default.
- W4381252227 hasVolume "12" @default.
- W4381252227 isParatext "false" @default.
- W4381252227 isRetracted "false" @default.
- W4381252227 workType "article" @default.