Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381252331> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4381252331 abstract "Approximate lattices are aperiodic generalisations of lattices of locally compact groups first studied in seminal work of Yves Meyer. They are uniformly discrete approximate groups (i.e. symmetric subsets stable under multiplication up to a finite error) of locally compact groups that have finite co-volume. Meyer showed that approximate lattices of Euclidean spaces (a.k.a. Meyer sets) come from lattices in higher-dimensional Euclidean spaces via the cut-and-project construction. A fundamental challenge consists in extending Meyer's theorem beyond Euclidean spaces. Our main result provides a complete structure theorem for approximate lattices in linear algebraic groups over local fields and their finite products, in particular generalising Meyer's theorem. Along the way, we extend a theorem of Lubotzky--Mozes--Raghunathan to approximate lattices, we show an arithmeticity statement in perfect groups with a higher-rank condition and build rank one approximate lattices with surprising behaviour. Our work also unveils the role plaid by a novel notion of cohomology for approximate subgroups. The structure of approximate lattices in linear algebraic groups reduces to a cohomology class which we can then prove vanishes in higher-rank building upon a method of Burger--Monod. Beyond approximate lattices, this cohomology is key to prove uniqueness of the quasi-models of approximate groups introduced by Hrushovski. We take this opportunity to collect in one place and one common language the recent advances in the theory of approximate lattices and infinite approximate subgroups of locally compact groups. This work begins with an introduction recording definitions and surveying previous results. In this first part we also tackle the main issue concerning the definition(s) of approximate lattices: there are six competing definitions and little is known of how they relate to one another." @default.
- W4381252331 created "2023-06-20" @default.
- W4381252331 creator A5025505759 @default.
- W4381252331 date "2023-06-16" @default.
- W4381252331 modified "2023-09-26" @default.
- W4381252331 title "Approximate lattices: structure in linear groups, definition(s) and beyond" @default.
- W4381252331 doi "https://doi.org/10.48550/arxiv.2306.09899" @default.
- W4381252331 hasPublicationYear "2023" @default.
- W4381252331 type Work @default.
- W4381252331 citedByCount "0" @default.
- W4381252331 crossrefType "posted-content" @default.
- W4381252331 hasAuthorship W4381252331A5025505759 @default.
- W4381252331 hasBestOaLocation W43812523311 @default.
- W4381252331 hasConcept C114614502 @default.
- W4381252331 hasConcept C118615104 @default.
- W4381252331 hasConcept C129782007 @default.
- W4381252331 hasConcept C134306372 @default.
- W4381252331 hasConcept C136119220 @default.
- W4381252331 hasConcept C164226766 @default.
- W4381252331 hasConcept C178790620 @default.
- W4381252331 hasConcept C180375552 @default.
- W4381252331 hasConcept C182419690 @default.
- W4381252331 hasConcept C185592680 @default.
- W4381252331 hasConcept C202444582 @default.
- W4381252331 hasConcept C2524010 @default.
- W4381252331 hasConcept C2781311116 @default.
- W4381252331 hasConcept C31498916 @default.
- W4381252331 hasConcept C33923547 @default.
- W4381252331 hasConcept C78606066 @default.
- W4381252331 hasConcept C9376300 @default.
- W4381252331 hasConceptScore W4381252331C114614502 @default.
- W4381252331 hasConceptScore W4381252331C118615104 @default.
- W4381252331 hasConceptScore W4381252331C129782007 @default.
- W4381252331 hasConceptScore W4381252331C134306372 @default.
- W4381252331 hasConceptScore W4381252331C136119220 @default.
- W4381252331 hasConceptScore W4381252331C164226766 @default.
- W4381252331 hasConceptScore W4381252331C178790620 @default.
- W4381252331 hasConceptScore W4381252331C180375552 @default.
- W4381252331 hasConceptScore W4381252331C182419690 @default.
- W4381252331 hasConceptScore W4381252331C185592680 @default.
- W4381252331 hasConceptScore W4381252331C202444582 @default.
- W4381252331 hasConceptScore W4381252331C2524010 @default.
- W4381252331 hasConceptScore W4381252331C2781311116 @default.
- W4381252331 hasConceptScore W4381252331C31498916 @default.
- W4381252331 hasConceptScore W4381252331C33923547 @default.
- W4381252331 hasConceptScore W4381252331C78606066 @default.
- W4381252331 hasConceptScore W4381252331C9376300 @default.
- W4381252331 hasLocation W43812523311 @default.
- W4381252331 hasOpenAccess W4381252331 @default.
- W4381252331 hasPrimaryLocation W43812523311 @default.
- W4381252331 hasRelatedWork W2003982752 @default.
- W4381252331 hasRelatedWork W2008584228 @default.
- W4381252331 hasRelatedWork W2056663089 @default.
- W4381252331 hasRelatedWork W2087734572 @default.
- W4381252331 hasRelatedWork W2736041310 @default.
- W4381252331 hasRelatedWork W2963293829 @default.
- W4381252331 hasRelatedWork W2977835146 @default.
- W4381252331 hasRelatedWork W4230292203 @default.
- W4381252331 hasRelatedWork W4253683578 @default.
- W4381252331 hasRelatedWork W776536739 @default.
- W4381252331 isParatext "false" @default.
- W4381252331 isRetracted "false" @default.
- W4381252331 workType "article" @default.