Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381279545> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4381279545 endingPage "2463" @default.
- W4381279545 startingPage "2449" @default.
- W4381279545 abstract "A machine learning model intends to produce a secure model with low bias and variance. Finding the optimal machine learning model for a dataset is a challenging task. A suitable machine learning model is yet to be specified for the Arthritis Profile Data dataset. Autoimmune disease is widely spread all over the world. Some autoimmune arthritis diseases are Rheumatoid Arthritis, Psoriatic Arthritis, Juvenile Arthritis, etc. These diseases come under both categories autoimmune and inflammatory diseases. The proposed work is designed to suggest the best machine learning model with the highest observed accuracy for the Arthritis Profile Data. Many authors do not compare newly created datasets with previously used datasets. This can lead to inaccurate results due to the lack of reliable comparison. Additionally, it can prevent researchers from detecting potential bias in the data. Comparing datasets can help to identify and address any potential issues and improve the accuracy of the results. It is important to review existing datasets before beginning a new project to ensure the accuracy of the results. This article is the first study on the topic that analysis the accuracy behavior of each machine learning model concerning the Arthritis Profile Data and various benchmark disease datasets with different hold-out and k-fold cross-validation methods. The study concludes with a glimpse of whether dataset and feature size affect model prediction accuracy and proffers a machine learning model for the Arthritis Profile Data. The proposed research explores base learning classification algorithms and ensemble methods such as Logistic Regression, K-Nearest Neighbor, Support Vector Machine, Random Forest, and Extreme Gradient Boosting from machine learning. Our empirical evidence clearly states XGBoost ensemble technique shows the highest accuracy for the Arthritis Profile Data." @default.
- W4381279545 created "2023-06-21" @default.
- W4381279545 creator A5076556061 @default.
- W4381279545 creator A5087886280 @default.
- W4381279545 date "2023-08-01" @default.
- W4381279545 modified "2023-09-27" @default.
- W4381279545 title "Benchmark datasets and real-time autoimmune disease dataset analysis using machine learning algorithms with implementation, analysis and results" @default.
- W4381279545 cites W2016193783 @default.
- W4381279545 cites W2128952811 @default.
- W4381279545 cites W2601656250 @default.
- W4381279545 cites W2775666559 @default.
- W4381279545 cites W2783498497 @default.
- W4381279545 cites W2903314155 @default.
- W4381279545 cites W2982083378 @default.
- W4381279545 cites W2997788455 @default.
- W4381279545 cites W3011484826 @default.
- W4381279545 cites W3015461837 @default.
- W4381279545 cites W3087379591 @default.
- W4381279545 cites W3102476541 @default.
- W4381279545 cites W3103707007 @default.
- W4381279545 cites W3129995509 @default.
- W4381279545 cites W3133755728 @default.
- W4381279545 cites W3162856783 @default.
- W4381279545 cites W3172921504 @default.
- W4381279545 cites W3173446864 @default.
- W4381279545 cites W3194905393 @default.
- W4381279545 cites W3204536821 @default.
- W4381279545 cites W3204725807 @default.
- W4381279545 cites W4220706313 @default.
- W4381279545 cites W4221125739 @default.
- W4381279545 cites W4223935973 @default.
- W4381279545 cites W4226528070 @default.
- W4381279545 cites W4280524633 @default.
- W4381279545 cites W4283802727 @default.
- W4381279545 cites W4285804100 @default.
- W4381279545 cites W4289912894 @default.
- W4381279545 cites W4293255424 @default.
- W4381279545 cites W4296210050 @default.
- W4381279545 cites W429766147 @default.
- W4381279545 doi "https://doi.org/10.3233/jifs-224115" @default.
- W4381279545 hasPublicationYear "2023" @default.
- W4381279545 type Work @default.
- W4381279545 citedByCount "0" @default.
- W4381279545 crossrefType "journal-article" @default.
- W4381279545 hasAuthorship W4381279545A5076556061 @default.
- W4381279545 hasAuthorship W4381279545A5087886280 @default.
- W4381279545 hasConcept C119857082 @default.
- W4381279545 hasConcept C12267149 @default.
- W4381279545 hasConcept C124101348 @default.
- W4381279545 hasConcept C13280743 @default.
- W4381279545 hasConcept C138885662 @default.
- W4381279545 hasConcept C154945302 @default.
- W4381279545 hasConcept C185798385 @default.
- W4381279545 hasConcept C205649164 @default.
- W4381279545 hasConcept C2776401178 @default.
- W4381279545 hasConcept C41008148 @default.
- W4381279545 hasConcept C41895202 @default.
- W4381279545 hasConcept C45942800 @default.
- W4381279545 hasConceptScore W4381279545C119857082 @default.
- W4381279545 hasConceptScore W4381279545C12267149 @default.
- W4381279545 hasConceptScore W4381279545C124101348 @default.
- W4381279545 hasConceptScore W4381279545C13280743 @default.
- W4381279545 hasConceptScore W4381279545C138885662 @default.
- W4381279545 hasConceptScore W4381279545C154945302 @default.
- W4381279545 hasConceptScore W4381279545C185798385 @default.
- W4381279545 hasConceptScore W4381279545C205649164 @default.
- W4381279545 hasConceptScore W4381279545C2776401178 @default.
- W4381279545 hasConceptScore W4381279545C41008148 @default.
- W4381279545 hasConceptScore W4381279545C41895202 @default.
- W4381279545 hasConceptScore W4381279545C45942800 @default.
- W4381279545 hasIssue "2" @default.
- W4381279545 hasLocation W43812795451 @default.
- W4381279545 hasOpenAccess W4381279545 @default.
- W4381279545 hasPrimaryLocation W43812795451 @default.
- W4381279545 hasRelatedWork W1576542469 @default.
- W4381279545 hasRelatedWork W1996541855 @default.
- W4381279545 hasRelatedWork W2369569015 @default.
- W4381279545 hasRelatedWork W3195168932 @default.
- W4381279545 hasRelatedWork W4281560664 @default.
- W4381279545 hasRelatedWork W4281757034 @default.
- W4381279545 hasRelatedWork W4285046548 @default.
- W4381279545 hasRelatedWork W4285741730 @default.
- W4381279545 hasRelatedWork W4311847748 @default.
- W4381279545 hasRelatedWork W4313488044 @default.
- W4381279545 hasVolume "45" @default.
- W4381279545 isParatext "false" @default.
- W4381279545 isRetracted "false" @default.
- W4381279545 workType "article" @default.