Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381280444> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4381280444 endingPage "30" @default.
- W4381280444 startingPage "1" @default.
- W4381280444 abstract "AbstractThe input-output network of an industrial chain provides a channel for risk transmission. Using Smooth-Transition Vector Autoregression model (STVAR) and Diebold-Yilmaz directional connectedness measures, we explore tail risk (extreme risk) contagion across China’s automotive industrial chain. We find significant spillover effects that are asymmetric in different phases of China’s business cycle, monetary cycle, and policy uncertainty. When China’s economy is in a recession, under a monetary expansion, or at a high level of policy uncertainty, the total risk spillover across the chain is higher. We also find apparent risk spillover from the financial services industries to the automotive industrial chain as China’s economy is in a recession or a monetary expansion period. Still, a reverse spillover is found as policy uncertainty is at a high level. Meanwhile, the direction of risk propagation across the automotive industrial chain may change with the transition in the economic state or policy uncertainty state.KEYWORDS: Tail riskinput–output linkageasymmetric contagionChina’s automotive industrial chainJEL Classifications: C34E32E42F13L62 Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 The data for some variables in our research, such as the manufacturing PMI index, is only available from January 2005.2 The stock index of China’s insurance industry starts from January 2007, so we set its CoVaRs between January 2005 and November 2006 constant, equaling the CoVaR of January 2007.3 We collect data on China’s manufacturing PMI, CCI, MSR, and IOR from the WIND database of China.4 The Trade Policy Uncertainty Index (based on mainland newspapers) was made by Davis et al. (Citation2019). It can be found at www.policyuncertainty.com. The Exchange Rate and Capital Account Policy Uncertainty Index (based on the full sample of 114 mainland newspapers) constructed by Huang and Luk (Citation2019) is available at http://economicpolicyuncertaintyinchina.weebly.com.9 We use two composite indicators to check whether the probability of the economy being in recession matches the recession dates in China’s economy. One is the Macroeconomic Climate Index (MCI), published by China’s National Bureau of Statistics. The other one is the Composite Leading Indicator (CLI), designed by the OECD. Based on MCI, we find 77 months are in recession, occupying about 38.9% of the time in our sample period. Based on CLI, we find 76 months in our sample period are identified as recession dates, which occupy about 38.4% of the total 198 sample months. In our results, the number of months that the transition function F(zt) of PMI or CCI is smaller than 0.5 is 74, occupying about 37.4% of the total. According to MCI and CLI, the likelihood that the economy is in a recession roughly corresponds with the recession dates in China’s economy.10 In the NBER’s convention for measuring the duration of a recession, the first month of the recession is the month following the peak, and the last month is the month of the trough.5 Based on the Schwarz information criterion, we choose two lags. The estimated smoothness parameter γ and threshold parameter c, defined in Equation 8, are 7.7 and −0.4 for PMI and 6.3 and -0.6 for CCI, respectively.6 We check the robustness of the results with respect to the different ordering of endogenous variables. In our STVAR model, there are 9 endogenous variables, so there are 9! = 362880 possible orderings. For computational considerations, we divide all orderings into three subgroups according to the position of the state variable, i.e., the state variable is put at first, middle, and last, respectively. Then, ten different orderings are randomly chosen from each subgroup. Throughout, we find that ‘risk spillover from one industry to the other', ‘total risk spillover’ and ‘net risk spillover' are completely unchanged.7 Based on the Schwarz information criterion, we choose two lags. The estimated smoothness parameter γ and threshold parameter c, defined in Equation 8, are 5.4 and 0.7 MSR, and 6.6 and -0.4 for IOR, respectively.8 Based on the Schwarz information criterion, we choose two lags. The estimated smoothness parameter γ and threshold parameter c, defined in Equation 8, are 3.7 and 0.2 for TPU and 5.2 and 0.9 for ECPU, respectively.Additional informationFundingThis work was supported by National Natural Science Foundation of China: [Grant Number 72171100]; Humanities and Social Science Fund of Ministry of Education of China: [Grant Number 18YJA790037]." @default.
- W4381280444 created "2023-06-21" @default.
- W4381280444 creator A5006849447 @default.
- W4381280444 creator A5008683048 @default.
- W4381280444 date "2023-05-30" @default.
- W4381280444 modified "2023-09-27" @default.
- W4381280444 title "Asymmetric tail risk contagion across China’s automotive industrial chain: a study based on input–output network" @default.
- W4381280444 cites W1727659491 @default.
- W4381280444 cites W1969610664 @default.
- W4381280444 cites W2008702027 @default.
- W4381280444 cites W2015416394 @default.
- W4381280444 cites W2048537909 @default.
- W4381280444 cites W2049023924 @default.
- W4381280444 cites W2050815921 @default.
- W4381280444 cites W2118922756 @default.
- W4381280444 cites W2123423040 @default.
- W4381280444 cites W2162397513 @default.
- W4381280444 cites W2172607430 @default.
- W4381280444 cites W2187818896 @default.
- W4381280444 cites W2260725321 @default.
- W4381280444 cites W2599295705 @default.
- W4381280444 cites W2600008457 @default.
- W4381280444 cites W2619453511 @default.
- W4381280444 cites W2790896740 @default.
- W4381280444 cites W2944463826 @default.
- W4381280444 cites W3020982786 @default.
- W4381280444 cites W3121786260 @default.
- W4381280444 cites W3121797216 @default.
- W4381280444 cites W3122012190 @default.
- W4381280444 cites W3123299105 @default.
- W4381280444 cites W3123933399 @default.
- W4381280444 cites W3124194226 @default.
- W4381280444 cites W3124656445 @default.
- W4381280444 cites W3125213268 @default.
- W4381280444 cites W3131073748 @default.
- W4381280444 cites W3186063883 @default.
- W4381280444 cites W39739780 @default.
- W4381280444 cites W4205107869 @default.
- W4381280444 cites W4230327943 @default.
- W4381280444 cites W4246715751 @default.
- W4381280444 doi "https://doi.org/10.1080/09535314.2023.2215909" @default.
- W4381280444 hasPublicationYear "2023" @default.
- W4381280444 type Work @default.
- W4381280444 citedByCount "0" @default.
- W4381280444 crossrefType "journal-article" @default.
- W4381280444 hasAuthorship W4381280444A5006849447 @default.
- W4381280444 hasAuthorship W4381280444A5008683048 @default.
- W4381280444 hasConcept C127413603 @default.
- W4381280444 hasConcept C133029050 @default.
- W4381280444 hasConcept C136764020 @default.
- W4381280444 hasConcept C139719470 @default.
- W4381280444 hasConcept C144133560 @default.
- W4381280444 hasConcept C146978453 @default.
- W4381280444 hasConcept C162324750 @default.
- W4381280444 hasConcept C166957645 @default.
- W4381280444 hasConcept C191935318 @default.
- W4381280444 hasConcept C195742910 @default.
- W4381280444 hasConcept C205649164 @default.
- W4381280444 hasConcept C2777382242 @default.
- W4381280444 hasConcept C41008148 @default.
- W4381280444 hasConcept C526921623 @default.
- W4381280444 hasConcept C55527203 @default.
- W4381280444 hasConcept C556758197 @default.
- W4381280444 hasConceptScore W4381280444C127413603 @default.
- W4381280444 hasConceptScore W4381280444C133029050 @default.
- W4381280444 hasConceptScore W4381280444C136764020 @default.
- W4381280444 hasConceptScore W4381280444C139719470 @default.
- W4381280444 hasConceptScore W4381280444C144133560 @default.
- W4381280444 hasConceptScore W4381280444C146978453 @default.
- W4381280444 hasConceptScore W4381280444C162324750 @default.
- W4381280444 hasConceptScore W4381280444C166957645 @default.
- W4381280444 hasConceptScore W4381280444C191935318 @default.
- W4381280444 hasConceptScore W4381280444C195742910 @default.
- W4381280444 hasConceptScore W4381280444C205649164 @default.
- W4381280444 hasConceptScore W4381280444C2777382242 @default.
- W4381280444 hasConceptScore W4381280444C41008148 @default.
- W4381280444 hasConceptScore W4381280444C526921623 @default.
- W4381280444 hasConceptScore W4381280444C55527203 @default.
- W4381280444 hasConceptScore W4381280444C556758197 @default.
- W4381280444 hasFunder F4320321001 @default.
- W4381280444 hasLocation W43812804441 @default.
- W4381280444 hasOpenAccess W4381280444 @default.
- W4381280444 hasPrimaryLocation W43812804441 @default.
- W4381280444 hasRelatedWork W1734059148 @default.
- W4381280444 hasRelatedWork W1966035235 @default.
- W4381280444 hasRelatedWork W2000626777 @default.
- W4381280444 hasRelatedWork W2005633236 @default.
- W4381280444 hasRelatedWork W2038800118 @default.
- W4381280444 hasRelatedWork W2130285301 @default.
- W4381280444 hasRelatedWork W3045174350 @default.
- W4381280444 hasRelatedWork W4381661952 @default.
- W4381280444 hasRelatedWork W4385304328 @default.
- W4381280444 hasRelatedWork W4386886863 @default.
- W4381280444 isParatext "false" @default.
- W4381280444 isRetracted "false" @default.
- W4381280444 workType "article" @default.