Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381298497> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4381298497 endingPage "519" @default.
- W4381298497 startingPage "511" @default.
- W4381298497 abstract "E-mail customers get several hundred spam messages on regular basis with a fresh content, from fresh addresses which are robotically produced by robot programming tool. The traditional methods namely dark-white lists are ineffective to filter the spam. The text mining (TM) methods are implemented to an e-mail for maximizing the yield the filtering of e-mail spam. The e-mail spam detection techniques have various phases such as to pre-process the data, extract the attributes, and classify the data. The pre-processing phase will clean the dataset, and features are extracted to identify the features having great impact on the target set. The combination of multiple classifiers is used in this phase for the classification focuses on integrating the SVM, NB, and Random Forest. Python is employed to execute the introduced system and diverse metrics such as accuracy, precision, and recall are considered for analyzing the outcomes. The results of proposed model show high improvement for the e-mail spam prediction." @default.
- W4381298497 created "2023-06-21" @default.
- W4381298497 creator A5026492452 @default.
- W4381298497 creator A5079261745 @default.
- W4381298497 creator A5092210441 @default.
- W4381298497 date "2023-01-01" @default.
- W4381298497 modified "2023-09-25" @default.
- W4381298497 title "Machine Learning Model for the E-mail Spam Detection with Data Mining Techniques" @default.
- W4381298497 cites W1964937432 @default.
- W4381298497 cites W1986889154 @default.
- W4381298497 cites W2125361505 @default.
- W4381298497 cites W2803620130 @default.
- W4381298497 cites W2915047133 @default.
- W4381298497 cites W2916077540 @default.
- W4381298497 cites W2948828148 @default.
- W4381298497 cites W3000358430 @default.
- W4381298497 cites W3006139231 @default.
- W4381298497 cites W3035764154 @default.
- W4381298497 cites W3163881436 @default.
- W4381298497 cites W3175473974 @default.
- W4381298497 cites W3183601421 @default.
- W4381298497 doi "https://doi.org/10.1007/978-981-19-9638-2_44" @default.
- W4381298497 hasPublicationYear "2023" @default.
- W4381298497 type Work @default.
- W4381298497 citedByCount "0" @default.
- W4381298497 crossrefType "book-chapter" @default.
- W4381298497 hasAuthorship W4381298497A5026492452 @default.
- W4381298497 hasAuthorship W4381298497A5079261745 @default.
- W4381298497 hasAuthorship W4381298497A5092210441 @default.
- W4381298497 hasConcept C106131492 @default.
- W4381298497 hasConcept C111919701 @default.
- W4381298497 hasConcept C119857082 @default.
- W4381298497 hasConcept C12267149 @default.
- W4381298497 hasConcept C124101348 @default.
- W4381298497 hasConcept C154945302 @default.
- W4381298497 hasConcept C169258074 @default.
- W4381298497 hasConcept C31972630 @default.
- W4381298497 hasConcept C41008148 @default.
- W4381298497 hasConcept C519991488 @default.
- W4381298497 hasConcept C81669768 @default.
- W4381298497 hasConceptScore W4381298497C106131492 @default.
- W4381298497 hasConceptScore W4381298497C111919701 @default.
- W4381298497 hasConceptScore W4381298497C119857082 @default.
- W4381298497 hasConceptScore W4381298497C12267149 @default.
- W4381298497 hasConceptScore W4381298497C124101348 @default.
- W4381298497 hasConceptScore W4381298497C154945302 @default.
- W4381298497 hasConceptScore W4381298497C169258074 @default.
- W4381298497 hasConceptScore W4381298497C31972630 @default.
- W4381298497 hasConceptScore W4381298497C41008148 @default.
- W4381298497 hasConceptScore W4381298497C519991488 @default.
- W4381298497 hasConceptScore W4381298497C81669768 @default.
- W4381298497 hasLocation W43812984971 @default.
- W4381298497 hasOpenAccess W4381298497 @default.
- W4381298497 hasPrimaryLocation W43812984971 @default.
- W4381298497 hasRelatedWork W2979979539 @default.
- W4381298497 hasRelatedWork W3004897296 @default.
- W4381298497 hasRelatedWork W3046613693 @default.
- W4381298497 hasRelatedWork W3127425528 @default.
- W4381298497 hasRelatedWork W3163101315 @default.
- W4381298497 hasRelatedWork W3195168932 @default.
- W4381298497 hasRelatedWork W4221021152 @default.
- W4381298497 hasRelatedWork W4311106074 @default.
- W4381298497 hasRelatedWork W4312949351 @default.
- W4381298497 hasRelatedWork W4360772992 @default.
- W4381298497 isParatext "false" @default.
- W4381298497 isRetracted "false" @default.
- W4381298497 workType "book-chapter" @default.