Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381299244> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W4381299244 endingPage "1" @default.
- W4381299244 startingPage "1" @default.
- W4381299244 abstract "Many real-world networks can be represented as weighted graphs, where weights represent the closeness or importance of relationships between node pairs. Sharing these graphs is beneficial for many applications while potentially leading to privacy breaches. Variants of deep learning approaches have been developed for synthetic graph publishing, but privacy-preserving graph (especially weighted graph) publishing has not been fully addressed. To bridge this gap, we propose WDP-GAN, a generative adversarial network (GAN) based privacy-preserving weighted graph generation approach, which can generate unlimited synthetic graphs of a given weighted graph while ensuring individual privacy. To do this, we devise a new node sequence sampling method to generate the training set while preserving both the edge weight and topological structure of the original graph. Moreover, we apply the bi-directional long-short term memory (Bi-LSTM) network to capture the interdependence of node pairs. WDP-GAN then approximates the edge weight information using the frequencies of edges produced by the generator. Furthermore, we propose an adaptive gradient perturbation algorithm to improve the speed and stability of the training process while ensuring individual privacy. Theoretical analysis and experiments on real-world network datasets show that WDP-GAN can generate graphs that effectively preserve structural utility while satisfying differential privacy." @default.
- W4381299244 created "2023-06-21" @default.
- W4381299244 creator A5009498760 @default.
- W4381299244 creator A5027420557 @default.
- W4381299244 creator A5037774305 @default.
- W4381299244 creator A5066737601 @default.
- W4381299244 creator A5079002977 @default.
- W4381299244 date "2023-01-01" @default.
- W4381299244 modified "2023-09-23" @default.
- W4381299244 title "WDP-GAN: Weighted Graph Generation with GAN under Differential Privacy" @default.
- W4381299244 doi "https://doi.org/10.1109/tnsm.2023.3280916" @default.
- W4381299244 hasPublicationYear "2023" @default.
- W4381299244 type Work @default.
- W4381299244 citedByCount "0" @default.
- W4381299244 crossrefType "journal-article" @default.
- W4381299244 hasAuthorship W4381299244A5009498760 @default.
- W4381299244 hasAuthorship W4381299244A5027420557 @default.
- W4381299244 hasAuthorship W4381299244A5037774305 @default.
- W4381299244 hasAuthorship W4381299244A5066737601 @default.
- W4381299244 hasAuthorship W4381299244A5079002977 @default.
- W4381299244 hasConcept C11413529 @default.
- W4381299244 hasConcept C132525143 @default.
- W4381299244 hasConcept C23130292 @default.
- W4381299244 hasConcept C41008148 @default.
- W4381299244 hasConcept C80444323 @default.
- W4381299244 hasConceptScore W4381299244C11413529 @default.
- W4381299244 hasConceptScore W4381299244C132525143 @default.
- W4381299244 hasConceptScore W4381299244C23130292 @default.
- W4381299244 hasConceptScore W4381299244C41008148 @default.
- W4381299244 hasConceptScore W4381299244C80444323 @default.
- W4381299244 hasFunder F4320321001 @default.
- W4381299244 hasLocation W43812992441 @default.
- W4381299244 hasOpenAccess W4381299244 @default.
- W4381299244 hasPrimaryLocation W43812992441 @default.
- W4381299244 hasRelatedWork W2061784418 @default.
- W4381299244 hasRelatedWork W2919589499 @default.
- W4381299244 hasRelatedWork W2999324419 @default.
- W4381299244 hasRelatedWork W3035493623 @default.
- W4381299244 hasRelatedWork W3120912508 @default.
- W4381299244 hasRelatedWork W4288055350 @default.
- W4381299244 hasRelatedWork W4304730863 @default.
- W4381299244 hasRelatedWork W4307537046 @default.
- W4381299244 hasRelatedWork W4310533684 @default.
- W4381299244 hasRelatedWork W4381244013 @default.
- W4381299244 isParatext "false" @default.
- W4381299244 isRetracted "false" @default.
- W4381299244 workType "article" @default.