Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381325504> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4381325504 endingPage "5428" @default.
- W4381325504 startingPage "5428" @default.
- W4381325504 abstract "PyVBMC is a Python implementation of the Variational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference for black-box computational models (Acerbi, 2018, 2020). VBMC is an approximate inference method designed for efficient parameter estimation and model assessment when model evaluations are mildly-to-very expensive (e.g., a second or more) and/or noisy. Specifically, VBMC computes: - a flexible (non-Gaussian) approximate posterior distribution of the model parameters, from which statistics and posterior samples can be easily extracted; - an approximation of the model evidence or marginal likelihood, a metric used for Bayesian model selection. PyVBMC can be applied to any computational or statistical model with up to roughly 10-15 continuous parameters, with the only requirement that the user can provide a Python function that computes the target log likelihood of the model, or an approximation thereof (e.g., an estimate of the likelihood obtained via simulation or Monte Carlo methods). PyVBMC is particularly effective when the model takes more than about a second per evaluation, with dramatic speed-ups of 1-2 orders of magnitude when compared to traditional approximate inference methods. Extensive benchmarks on both artificial test problems and a large number of real models from the computational sciences, particularly computational and cognitive neuroscience, show that VBMC generally - and often vastly - outperforms alternative methods for sample-efficient Bayesian inference, and is applicable to both exact and simulator-based models (Acerbi, 2018, 2019, 2020). PyVBMC brings this state-of-the-art inference algorithm to Python, along with an easy-to-use Pythonic interface for running the algorithm and manipulating and visualizing its results." @default.
- W4381325504 created "2023-06-21" @default.
- W4381325504 creator A5018117355 @default.
- W4381325504 creator A5031667972 @default.
- W4381325504 creator A5042394636 @default.
- W4381325504 creator A5065500757 @default.
- W4381325504 creator A5090892103 @default.
- W4381325504 date "2023-06-21" @default.
- W4381325504 modified "2023-10-10" @default.
- W4381325504 title "PyVBMC: Efficient Bayesian inference in Python" @default.
- W4381325504 cites W2110720940 @default.
- W4381325504 cites W2413988422 @default.
- W4381325504 cites W2602518026 @default.
- W4381325504 cites W3010959735 @default.
- W4381325504 cites W3018745833 @default.
- W4381325504 cites W3099878876 @default.
- W4381325504 cites W3113189257 @default.
- W4381325504 cites W4220886961 @default.
- W4381325504 cites W4293051681 @default.
- W4381325504 cites W4317889697 @default.
- W4381325504 doi "https://doi.org/10.21105/joss.05428" @default.
- W4381325504 hasPublicationYear "2023" @default.
- W4381325504 type Work @default.
- W4381325504 citedByCount "2" @default.
- W4381325504 crossrefType "journal-article" @default.
- W4381325504 hasAuthorship W4381325504A5018117355 @default.
- W4381325504 hasAuthorship W4381325504A5031667972 @default.
- W4381325504 hasAuthorship W4381325504A5042394636 @default.
- W4381325504 hasAuthorship W4381325504A5065500757 @default.
- W4381325504 hasAuthorship W4381325504A5090892103 @default.
- W4381325504 hasBestOaLocation W43813255041 @default.
- W4381325504 hasConcept C105795698 @default.
- W4381325504 hasConcept C107673813 @default.
- W4381325504 hasConcept C111919701 @default.
- W4381325504 hasConcept C11413529 @default.
- W4381325504 hasConcept C119857082 @default.
- W4381325504 hasConcept C154945302 @default.
- W4381325504 hasConcept C160234255 @default.
- W4381325504 hasConcept C162376815 @default.
- W4381325504 hasConcept C167928553 @default.
- W4381325504 hasConcept C19499675 @default.
- W4381325504 hasConcept C2776214188 @default.
- W4381325504 hasConcept C2779377595 @default.
- W4381325504 hasConcept C33923547 @default.
- W4381325504 hasConcept C41008148 @default.
- W4381325504 hasConcept C519991488 @default.
- W4381325504 hasConcept C57830394 @default.
- W4381325504 hasConcept C89106044 @default.
- W4381325504 hasConcept C93959086 @default.
- W4381325504 hasConcept C95923904 @default.
- W4381325504 hasConceptScore W4381325504C105795698 @default.
- W4381325504 hasConceptScore W4381325504C107673813 @default.
- W4381325504 hasConceptScore W4381325504C111919701 @default.
- W4381325504 hasConceptScore W4381325504C11413529 @default.
- W4381325504 hasConceptScore W4381325504C119857082 @default.
- W4381325504 hasConceptScore W4381325504C154945302 @default.
- W4381325504 hasConceptScore W4381325504C160234255 @default.
- W4381325504 hasConceptScore W4381325504C162376815 @default.
- W4381325504 hasConceptScore W4381325504C167928553 @default.
- W4381325504 hasConceptScore W4381325504C19499675 @default.
- W4381325504 hasConceptScore W4381325504C2776214188 @default.
- W4381325504 hasConceptScore W4381325504C2779377595 @default.
- W4381325504 hasConceptScore W4381325504C33923547 @default.
- W4381325504 hasConceptScore W4381325504C41008148 @default.
- W4381325504 hasConceptScore W4381325504C519991488 @default.
- W4381325504 hasConceptScore W4381325504C57830394 @default.
- W4381325504 hasConceptScore W4381325504C89106044 @default.
- W4381325504 hasConceptScore W4381325504C93959086 @default.
- W4381325504 hasConceptScore W4381325504C95923904 @default.
- W4381325504 hasIssue "86" @default.
- W4381325504 hasLocation W43813255041 @default.
- W4381325504 hasLocation W43813255042 @default.
- W4381325504 hasOpenAccess W4381325504 @default.
- W4381325504 hasPrimaryLocation W43813255041 @default.
- W4381325504 hasRelatedWork W1563730461 @default.
- W4381325504 hasRelatedWork W1911375530 @default.
- W4381325504 hasRelatedWork W1978556363 @default.
- W4381325504 hasRelatedWork W2417554456 @default.
- W4381325504 hasRelatedWork W3008255512 @default.
- W4381325504 hasRelatedWork W3099078835 @default.
- W4381325504 hasRelatedWork W3167527995 @default.
- W4381325504 hasRelatedWork W4323321461 @default.
- W4381325504 hasRelatedWork W4327811170 @default.
- W4381325504 hasRelatedWork W75953361 @default.
- W4381325504 hasVolume "8" @default.
- W4381325504 isParatext "false" @default.
- W4381325504 isRetracted "false" @default.
- W4381325504 workType "article" @default.