Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381325697> ?p ?o ?g. }
- W4381325697 endingPage "113204" @default.
- W4381325697 startingPage "113204" @default.
- W4381325697 abstract "The particle size distribution (PSD) of particle medium plays an important role in the field of particle science, so the inversion of PSD is of great significance. To study spherical particle PSD, a multi-wavelength detection model based on a global optimization algorithm called OptQuest nonlinear programming (OQNLP) is established in this paper and an experiment to verify the reliability of the system is designed. The numerical results show that the selection of detection wavelength has great influence on the results of PSD inversion. The relative error of PSD parameters is minimized by choosing the wavelength at the peak of extinction coefficient curve of appropriate particle size. Both simulation and experimental results indicate that the five-wavelength method has the highest testing accuracy. When high accuracy is not required, choosing the four-wavelength method is the most suitable testing method. Furthermore, the universality of the model is also confirmed for the Rosin-Rammer (R-R) function, normal (N-N) function, and lognormal (L-N) function." @default.
- W4381325697 created "2023-06-21" @default.
- W4381325697 creator A5013964648 @default.
- W4381325697 creator A5035245117 @default.
- W4381325697 creator A5048405420 @default.
- W4381325697 creator A5058380236 @default.
- W4381325697 creator A5062227639 @default.
- W4381325697 creator A5067705426 @default.
- W4381325697 creator A5071216468 @default.
- W4381325697 creator A5087700327 @default.
- W4381325697 date "2023-09-01" @default.
- W4381325697 modified "2023-09-26" @default.
- W4381325697 title "Multi-wavelength method based on global optimization for particle size distribution" @default.
- W4381325697 cites W1969358639 @default.
- W4381325697 cites W1981435053 @default.
- W4381325697 cites W1983509816 @default.
- W4381325697 cites W1985970679 @default.
- W4381325697 cites W1992333966 @default.
- W4381325697 cites W1998394047 @default.
- W4381325697 cites W2023130573 @default.
- W4381325697 cites W2028014925 @default.
- W4381325697 cites W2028792935 @default.
- W4381325697 cites W2031396756 @default.
- W4381325697 cites W2044031107 @default.
- W4381325697 cites W2055134456 @default.
- W4381325697 cites W2068790851 @default.
- W4381325697 cites W2094828749 @default.
- W4381325697 cites W2094879888 @default.
- W4381325697 cites W2095297895 @default.
- W4381325697 cites W2111578166 @default.
- W4381325697 cites W2128524931 @default.
- W4381325697 cites W2145938368 @default.
- W4381325697 cites W2294584073 @default.
- W4381325697 cites W2575303663 @default.
- W4381325697 cites W2612591123 @default.
- W4381325697 cites W2782583125 @default.
- W4381325697 cites W2806681812 @default.
- W4381325697 cites W2809382987 @default.
- W4381325697 cites W2883465623 @default.
- W4381325697 cites W2883875517 @default.
- W4381325697 cites W2886218510 @default.
- W4381325697 cites W2909048326 @default.
- W4381325697 cites W2912428869 @default.
- W4381325697 cites W2926715291 @default.
- W4381325697 cites W2956976047 @default.
- W4381325697 cites W2967118220 @default.
- W4381325697 cites W2972713880 @default.
- W4381325697 cites W2973731271 @default.
- W4381325697 cites W2985239179 @default.
- W4381325697 cites W2997677515 @default.
- W4381325697 cites W2999124735 @default.
- W4381325697 cites W3000705481 @default.
- W4381325697 cites W3001129984 @default.
- W4381325697 cites W3007643196 @default.
- W4381325697 cites W3012367656 @default.
- W4381325697 cites W3012553311 @default.
- W4381325697 cites W3043065816 @default.
- W4381325697 cites W3046305326 @default.
- W4381325697 cites W3081182083 @default.
- W4381325697 cites W3092005411 @default.
- W4381325697 cites W3100352884 @default.
- W4381325697 cites W3107089255 @default.
- W4381325697 cites W3111427386 @default.
- W4381325697 cites W3118808711 @default.
- W4381325697 cites W3119504255 @default.
- W4381325697 cites W3123721605 @default.
- W4381325697 cites W3136262012 @default.
- W4381325697 cites W3164955721 @default.
- W4381325697 cites W3191682010 @default.
- W4381325697 cites W4211199567 @default.
- W4381325697 cites W4224232223 @default.
- W4381325697 cites W4283257793 @default.
- W4381325697 cites W4285268336 @default.
- W4381325697 cites W4287092074 @default.
- W4381325697 cites W4297897639 @default.
- W4381325697 cites W4306931887 @default.
- W4381325697 cites W4306972443 @default.
- W4381325697 cites W4308345023 @default.
- W4381325697 cites W4308886968 @default.
- W4381325697 cites W4310415698 @default.
- W4381325697 cites W4310980584 @default.
- W4381325697 cites W4313269553 @default.
- W4381325697 cites W4317725400 @default.
- W4381325697 doi "https://doi.org/10.1016/j.measurement.2023.113204" @default.
- W4381325697 hasPublicationYear "2023" @default.
- W4381325697 type Work @default.
- W4381325697 citedByCount "0" @default.
- W4381325697 crossrefType "journal-article" @default.
- W4381325697 hasAuthorship W4381325697A5013964648 @default.
- W4381325697 hasAuthorship W4381325697A5035245117 @default.
- W4381325697 hasAuthorship W4381325697A5048405420 @default.
- W4381325697 hasAuthorship W4381325697A5058380236 @default.
- W4381325697 hasAuthorship W4381325697A5062227639 @default.
- W4381325697 hasAuthorship W4381325697A5067705426 @default.
- W4381325697 hasAuthorship W4381325697A5071216468 @default.
- W4381325697 hasAuthorship W4381325697A5087700327 @default.
- W4381325697 hasConcept C105795698 @default.
- W4381325697 hasConcept C11413529 @default.