Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381330356> ?p ?o ?g. }
- W4381330356 endingPage "046007" @default.
- W4381330356 startingPage "046007" @default.
- W4381330356 abstract "Abstract Objectives . Recent event-based analyses of transient neural activities have characterized the oscillatory bursts as a neural signature that bridges dynamic neural states to cognition and behaviors. Following this insight, our study aimed to (1) compare the efficacy of common burst detection algorithms under varying signal-to-noise ratios and event durations using synthetic signals and (2) establish a strategic guideline for selecting the optimal algorithm for real datasets with undefined properties. Approach. We tested the robustness of burst detection algorithms using a simulation dataset comprising bursts of multiple frequencies. To systematically assess their performance, we used a metric called ‘detection confidence’, quantifying classification accuracy and temporal precision in a balanced manner. Given that burst properties in empirical data are often unknown in advance, we then proposed a selection rule to identify an optimal algorithm for a given dataset and validated its application on local field potentials of basolateral amygdala recorded from male mice (n=8) exposed to a natural threat. Main Results. Our simulation-based evaluation demonstrated that burst detection is contingent upon event duration, whereas accurately pinpointing burst onsets is more susceptible to noise level. For real data, the algorithm chosen based on the selection rule exhibited superior detection and temporal accuracy, although its statistical significance differed across frequency bands. Notably, the algorithm chosen by human visual screening differed from the one recommended by the rule, implying a potential misalignment between human priors and mathematical assumptions of the algorithms. Significance. Therefore, our findings underscore that the precise detection of transient bursts is fundamentally influenced by the chosen algorithm. The proposed algorithm-selection rule suggests a potentially viable solution, while also emphasizing the inherent limitations originating from algorithmic design and volatile performances across datasets. Consequently, this study cautions against relying solely on heuristic-based approaches, advocating for a careful algorithm selection in burst detection studies." @default.
- W4381330356 created "2023-06-21" @default.
- W4381330356 creator A5008551271 @default.
- W4381330356 creator A5057384641 @default.
- W4381330356 date "2023-07-14" @default.
- W4381330356 modified "2023-09-25" @default.
- W4381330356 title "A guide towards optimal detection of transient oscillatory bursts with unknown parameters" @default.
- W4381330356 cites W1449283962 @default.
- W4381330356 cites W1495775210 @default.
- W4381330356 cites W1861730306 @default.
- W4381330356 cites W1902335101 @default.
- W4381330356 cites W1966389522 @default.
- W4381330356 cites W1972145246 @default.
- W4381330356 cites W1975277950 @default.
- W4381330356 cites W1978389345 @default.
- W4381330356 cites W1989666886 @default.
- W4381330356 cites W1997603362 @default.
- W4381330356 cites W2020997493 @default.
- W4381330356 cites W2026917669 @default.
- W4381330356 cites W2042105302 @default.
- W4381330356 cites W2051391557 @default.
- W4381330356 cites W2067390842 @default.
- W4381330356 cites W2076608692 @default.
- W4381330356 cites W2085974779 @default.
- W4381330356 cites W2100741386 @default.
- W4381330356 cites W2122286595 @default.
- W4381330356 cites W2125669004 @default.
- W4381330356 cites W2126882523 @default.
- W4381330356 cites W2127248303 @default.
- W4381330356 cites W2142359126 @default.
- W4381330356 cites W2142875089 @default.
- W4381330356 cites W2145487065 @default.
- W4381330356 cites W2161908852 @default.
- W4381330356 cites W2163028963 @default.
- W4381330356 cites W2165416206 @default.
- W4381330356 cites W2165878107 @default.
- W4381330356 cites W2169756567 @default.
- W4381330356 cites W2175184313 @default.
- W4381330356 cites W2229256208 @default.
- W4381330356 cites W2297363866 @default.
- W4381330356 cites W2310514225 @default.
- W4381330356 cites W2310622091 @default.
- W4381330356 cites W2468463735 @default.
- W4381330356 cites W2504479060 @default.
- W4381330356 cites W2559819140 @default.
- W4381330356 cites W2617099387 @default.
- W4381330356 cites W2762427114 @default.
- W4381330356 cites W2764335780 @default.
- W4381330356 cites W2767339548 @default.
- W4381330356 cites W2767814366 @default.
- W4381330356 cites W2785023327 @default.
- W4381330356 cites W2800719794 @default.
- W4381330356 cites W2886606283 @default.
- W4381330356 cites W2950651308 @default.
- W4381330356 cites W2950721622 @default.
- W4381330356 cites W2952185808 @default.
- W4381330356 cites W2954952848 @default.
- W4381330356 cites W2971752039 @default.
- W4381330356 cites W2985667650 @default.
- W4381330356 cites W2987045943 @default.
- W4381330356 cites W2989694357 @default.
- W4381330356 cites W3002575160 @default.
- W4381330356 cites W3006282383 @default.
- W4381330356 cites W3026589461 @default.
- W4381330356 cites W3047824993 @default.
- W4381330356 cites W3086290729 @default.
- W4381330356 cites W3104833475 @default.
- W4381330356 cites W3109025236 @default.
- W4381330356 cites W3110151578 @default.
- W4381330356 cites W3123620074 @default.
- W4381330356 cites W3182944339 @default.
- W4381330356 cites W4210499767 @default.
- W4381330356 cites W4220844625 @default.
- W4381330356 cites W4288695432 @default.
- W4381330356 cites W4293331723 @default.
- W4381330356 cites W4302067267 @default.
- W4381330356 cites W70005029 @default.
- W4381330356 doi "https://doi.org/10.1088/1741-2552/acdffd" @default.
- W4381330356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37339619" @default.
- W4381330356 hasPublicationYear "2023" @default.
- W4381330356 type Work @default.
- W4381330356 citedByCount "0" @default.
- W4381330356 crossrefType "journal-article" @default.
- W4381330356 hasAuthorship W4381330356A5008551271 @default.
- W4381330356 hasAuthorship W4381330356A5057384641 @default.
- W4381330356 hasBestOaLocation W43813303561 @default.
- W4381330356 hasConcept C104317684 @default.
- W4381330356 hasConcept C105795698 @default.
- W4381330356 hasConcept C111919701 @default.
- W4381330356 hasConcept C11413529 @default.
- W4381330356 hasConcept C115961682 @default.
- W4381330356 hasConcept C119857082 @default.
- W4381330356 hasConcept C121332964 @default.
- W4381330356 hasConcept C124101348 @default.
- W4381330356 hasConcept C137270730 @default.
- W4381330356 hasConcept C153180895 @default.
- W4381330356 hasConcept C154945302 @default.
- W4381330356 hasConcept C162324750 @default.