Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381332199> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4381332199 abstract "Livestock production is a crucial part of the global economy with a worth of estimated $1.4 trillion. It provides livelihoods for 1.3 billion people and supports 600 million poor rural household farmers in developing countries. In Bangladesh, it contributes 6.5% to the country's GDP. However, this industry faces substantial financial setbacks when contagious diseases transmit among their livestock. One of the most common and expensive diseases affecting the livestock industry is Bovine Mastitis. This paper presents a real-time system for detecting bovine mastitis in livestock using deep learning (dl) and machine learning (ml) techniques. The system aims to provide a timely and accurate diagnosis of mastitis, ultimately reducing costs and improving the efficiency of treatment. By utilizing dl and ml techniques, the system is able to analyze data collected from edge devices and make accurate predictions about the presence of mastitis. The dataset that has been used for the classification contains both an Image dataset consisting of 1341 images and a Numerical dataset that had been taken from 1100 cows over a period of six days. The edge device utilizes sensors and cameras to collect data from the cow, which is then processed through ml and dl algorithms using Raspberry Pi and cloud computing respectively, and then displays if the cow is infected with mastitis or not. Inception V3 and RandomForest algorithms were used for dl and ml, respectively, and had an accuracy of 99.34% and 99% respectively. The proposed system has the potential to significantly reduce the economic impact of this disease in the dairy industry of Bangladesh and other developing countries by providing timely and accurate diagnosis and helping to improve treatment efficiency and protect the health and productivity of livestock animals." @default.
- W4381332199 created "2023-06-21" @default.
- W4381332199 creator A5004615852 @default.
- W4381332199 creator A5035270060 @default.
- W4381332199 creator A5041744103 @default.
- W4381332199 creator A5060179248 @default.
- W4381332199 creator A5092213125 @default.
- W4381332199 date "2023-05-10" @default.
- W4381332199 modified "2023-09-27" @default.
- W4381332199 title "Real-Time Mastitis Detection in Livestock using Deep Learning and Machine Learning Leveraging Edge Devices" @default.
- W4381332199 doi "https://doi.org/10.1109/ismict58261.2023.10152110" @default.
- W4381332199 hasPublicationYear "2023" @default.
- W4381332199 type Work @default.
- W4381332199 citedByCount "0" @default.
- W4381332199 crossrefType "proceedings-article" @default.
- W4381332199 hasAuthorship W4381332199A5004615852 @default.
- W4381332199 hasAuthorship W4381332199A5035270060 @default.
- W4381332199 hasAuthorship W4381332199A5041744103 @default.
- W4381332199 hasAuthorship W4381332199A5060179248 @default.
- W4381332199 hasAuthorship W4381332199A5092213125 @default.
- W4381332199 hasConcept C111919701 @default.
- W4381332199 hasConcept C112964050 @default.
- W4381332199 hasConcept C118518473 @default.
- W4381332199 hasConcept C119857082 @default.
- W4381332199 hasConcept C142724271 @default.
- W4381332199 hasConcept C144133560 @default.
- W4381332199 hasConcept C154945302 @default.
- W4381332199 hasConcept C162307627 @default.
- W4381332199 hasConcept C166957645 @default.
- W4381332199 hasConcept C205649164 @default.
- W4381332199 hasConcept C2776344049 @default.
- W4381332199 hasConcept C3987366 @default.
- W4381332199 hasConcept C41008148 @default.
- W4381332199 hasConcept C71924100 @default.
- W4381332199 hasConcept C79974875 @default.
- W4381332199 hasConcept C97137747 @default.
- W4381332199 hasConceptScore W4381332199C111919701 @default.
- W4381332199 hasConceptScore W4381332199C112964050 @default.
- W4381332199 hasConceptScore W4381332199C118518473 @default.
- W4381332199 hasConceptScore W4381332199C119857082 @default.
- W4381332199 hasConceptScore W4381332199C142724271 @default.
- W4381332199 hasConceptScore W4381332199C144133560 @default.
- W4381332199 hasConceptScore W4381332199C154945302 @default.
- W4381332199 hasConceptScore W4381332199C162307627 @default.
- W4381332199 hasConceptScore W4381332199C166957645 @default.
- W4381332199 hasConceptScore W4381332199C205649164 @default.
- W4381332199 hasConceptScore W4381332199C2776344049 @default.
- W4381332199 hasConceptScore W4381332199C3987366 @default.
- W4381332199 hasConceptScore W4381332199C41008148 @default.
- W4381332199 hasConceptScore W4381332199C71924100 @default.
- W4381332199 hasConceptScore W4381332199C79974875 @default.
- W4381332199 hasConceptScore W4381332199C97137747 @default.
- W4381332199 hasLocation W43813321991 @default.
- W4381332199 hasOpenAccess W4381332199 @default.
- W4381332199 hasPrimaryLocation W43813321991 @default.
- W4381332199 hasRelatedWork W2082849045 @default.
- W4381332199 hasRelatedWork W2169416940 @default.
- W4381332199 hasRelatedWork W2254507792 @default.
- W4381332199 hasRelatedWork W2595030037 @default.
- W4381332199 hasRelatedWork W2753347503 @default.
- W4381332199 hasRelatedWork W3092110800 @default.
- W4381332199 hasRelatedWork W3159817883 @default.
- W4381332199 hasRelatedWork W4291825654 @default.
- W4381332199 hasRelatedWork W9402558 @default.
- W4381332199 hasRelatedWork W2788192497 @default.
- W4381332199 isParatext "false" @default.
- W4381332199 isRetracted "false" @default.
- W4381332199 workType "article" @default.