Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381334563> ?p ?o ?g. }
- W4381334563 abstract "Fly ash–slag geopolymer concrete is an intangible material that does not use conventional Portland cement, thereby reducing CO2 emissions into the environment, and helping to increase sustainable development. However, compared with conventional concrete, the compressive strength of fly ash–slag geopolymer concrete is complexly dependent on many factors. Using the data-driven approach for investigating and predicting fly ash–slag geopolymer concrete compressive strength is a suitable choice. This study introduces 11 easily accessible machine learning models in open-source libraries of the Python programming language such as support vector machine, random forest (RF), gradient boosting (GB), AdaBoost, decision trees, light GB machine, extreme GB (XGB), K-nearest neighbors, multivariable regression, Gaussian process regression, and CatBoost (CatB). Based on a dataset of 158 samples, 14 inputs, and 1 output variable compressive strength, the performance of 11 machine learning models was evaluated through 4 criteria including coefficient of determination, root mean square error, mean absolute error, and mean absolute percentage error combined with 10 repeats of 10-fold cross-validation. Four models have the best performance based on the above four criteria value in determining compressive strength for testing dataset sorted descending is CatB > XGB > RF > GB. Global Shapley (SHAP) value-based CatB and XGB indicates three groups of factors with decreasing influence on compressive strength of geopolymer concrete: group I (slag, molarity, coarse aggregate, curing temperature, and alkaline activator/binder) > group II (Na2SiO3 content, NaOH content, fine aggregate, fly ash content), curing period > group III (extra water added, NaOH/Na2SiO3, superplasticizer content, rest period). Extra water added, NaOH/Na2SiO3, superplasticizer content, rest period have insignificant influence on the compressive strength value of geopolymer concrete. The greater the slag content in the slag–fly ash mixture, the greater the compressive strength of geopolymer concrete. The optimum molarity of NaOH concentration is about 14–16 M for designing the compressive strength of geopolymer concrete. SHAP values partial dependence plots (PDP) and PDP indicate that alkaline activator/binder optimal values exist to achieve high compressive strength. The compressive strength increases with curing temperature between 20 and 100°C. PDP values show that the tendency to increase compressive strength with increasing coarse aggregate content from about 750 to 1250 kg/m3." @default.
- W4381334563 created "2023-06-21" @default.
- W4381334563 creator A5059172603 @default.
- W4381334563 date "2023-06-20" @default.
- W4381334563 modified "2023-09-23" @default.
- W4381334563 title "Data‐driven approach for investigating and predicting of compressive strength of fly ash–slag geopolymer concrete" @default.
- W4381334563 cites W100696696 @default.
- W4381334563 cites W1678356000 @default.
- W4381334563 cites W168220886 @default.
- W4381334563 cites W1947120638 @default.
- W4381334563 cites W1970926452 @default.
- W4381334563 cites W1972725143 @default.
- W4381334563 cites W1982623886 @default.
- W4381334563 cites W1984788589 @default.
- W4381334563 cites W2014192338 @default.
- W4381334563 cites W2016862440 @default.
- W4381334563 cites W2018268432 @default.
- W4381334563 cites W2033494221 @default.
- W4381334563 cites W2040812197 @default.
- W4381334563 cites W2072376018 @default.
- W4381334563 cites W2074060606 @default.
- W4381334563 cites W2092468521 @default.
- W4381334563 cites W2098315120 @default.
- W4381334563 cites W2102201073 @default.
- W4381334563 cites W2117475904 @default.
- W4381334563 cites W2129888542 @default.
- W4381334563 cites W2182973981 @default.
- W4381334563 cites W2280972869 @default.
- W4381334563 cites W2292069425 @default.
- W4381334563 cites W2398395770 @default.
- W4381334563 cites W2460322399 @default.
- W4381334563 cites W2463170293 @default.
- W4381334563 cites W2476194921 @default.
- W4381334563 cites W2493424674 @default.
- W4381334563 cites W2521897842 @default.
- W4381334563 cites W2607327918 @default.
- W4381334563 cites W2620919127 @default.
- W4381334563 cites W2772316779 @default.
- W4381334563 cites W2779644788 @default.
- W4381334563 cites W2789555476 @default.
- W4381334563 cites W2789629010 @default.
- W4381334563 cites W2791023447 @default.
- W4381334563 cites W2791884343 @default.
- W4381334563 cites W2795745428 @default.
- W4381334563 cites W2804094525 @default.
- W4381334563 cites W280799825 @default.
- W4381334563 cites W2889997342 @default.
- W4381334563 cites W2908271411 @default.
- W4381334563 cites W2908285925 @default.
- W4381334563 cites W2940094041 @default.
- W4381334563 cites W2952362934 @default.
- W4381334563 cites W2969634526 @default.
- W4381334563 cites W2982365848 @default.
- W4381334563 cites W2989963616 @default.
- W4381334563 cites W2990316359 @default.
- W4381334563 cites W2991525034 @default.
- W4381334563 cites W3038033549 @default.
- W4381334563 cites W3040469838 @default.
- W4381334563 cites W3042017563 @default.
- W4381334563 cites W3048264598 @default.
- W4381334563 cites W3081776292 @default.
- W4381334563 cites W3092657053 @default.
- W4381334563 cites W3097029109 @default.
- W4381334563 cites W3097731257 @default.
- W4381334563 cites W3102476541 @default.
- W4381334563 cites W3106947820 @default.
- W4381334563 cites W3111140248 @default.
- W4381334563 cites W3136437809 @default.
- W4381334563 cites W3159185355 @default.
- W4381334563 cites W3162629243 @default.
- W4381334563 cites W3164636606 @default.
- W4381334563 cites W3172364525 @default.
- W4381334563 cites W3187232445 @default.
- W4381334563 cites W3189453710 @default.
- W4381334563 cites W3201401131 @default.
- W4381334563 cites W3203897832 @default.
- W4381334563 cites W3205155340 @default.
- W4381334563 cites W3207942183 @default.
- W4381334563 cites W3212466282 @default.
- W4381334563 cites W3216835877 @default.
- W4381334563 cites W4200440573 @default.
- W4381334563 cites W4210750266 @default.
- W4381334563 cites W4214807209 @default.
- W4381334563 cites W4220695502 @default.
- W4381334563 cites W4220720107 @default.
- W4381334563 cites W4220819342 @default.
- W4381334563 cites W4220826220 @default.
- W4381334563 cites W4224315596 @default.
- W4381334563 cites W4224909524 @default.
- W4381334563 cites W4281738326 @default.
- W4381334563 cites W4283732996 @default.
- W4381334563 cites W4283734447 @default.
- W4381334563 cites W4284882119 @default.
- W4381334563 cites W4285728424 @default.
- W4381334563 cites W4319316907 @default.
- W4381334563 cites W4321846929 @default.
- W4381334563 cites W4324358761 @default.
- W4381334563 doi "https://doi.org/10.1002/suco.202300298" @default.
- W4381334563 hasPublicationYear "2023" @default.
- W4381334563 type Work @default.