Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381381236> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4381381236 endingPage "4021" @default.
- W4381381236 startingPage "4009" @default.
- W4381381236 abstract "Artificial intelligence image processing has been of interest to research investigators in tumor identification and determination. Magnetic resonance imaging for clinical detection is the technique of choice for identifying tumors because of its advantages such as accurate localization with tomography in any orientation. Nevertheless, owing to the complexity of the images and the heterogeneity of the tumors, existing methodologies have insufficient field of view and require expensive computations to capture semantic information in the view, rendering them lacking in universality of application. Consequently, this thesis developed a medical image segmentation algorithm based on global field of view attention network (GVANet). It focuses on replacing the original convolution with a transformer structure and views in a larger field-of-view domain to build a global view at each layer, which captures the refined pixel information and category information in the region of interest with fewer parameters so as to address the defective tumor edge segmentation problem. The dissertation exploits the pixel-level information of the input image, the category information of the tumor region and the normal tissue region to segment the MRI image and assign weights to the pixel representatives. This medical image recognition algorithm enables to undertake the ambiguous tumor edge segmentation task with low computational complexity and to maximize the segmentation accuracy and model property. Nearly four thousand MRI images from the Monash University Research Center for Artificial Intelligence were applied for the experiments. The outcome indicates that the approach obtains outstanding classification capability on the data set. Both the mask (IoU) and DSC quality were improved by 7.6% and 6.3% over the strong baseline." @default.
- W4381381236 created "2023-06-21" @default.
- W4381381236 creator A5021627418 @default.
- W4381381236 creator A5027630663 @default.
- W4381381236 creator A5049146326 @default.
- W4381381236 creator A5065873184 @default.
- W4381381236 date "2023-08-24" @default.
- W4381381236 modified "2023-09-27" @default.
- W4381381236 title "Global field of view-based pixel-level recognition method for medical images" @default.
- W4381381236 cites W2591213449 @default.
- W4381381236 cites W2783895116 @default.
- W4381381236 cites W2935748854 @default.
- W4381381236 cites W2952000998 @default.
- W4381381236 cites W3014641072 @default.
- W4381381236 cites W3122719141 @default.
- W4381381236 cites W3127076201 @default.
- W4381381236 cites W3142290244 @default.
- W4381381236 cites W3190774242 @default.
- W4381381236 cites W3205247817 @default.
- W4381381236 cites W4200087356 @default.
- W4381381236 cites W4205148457 @default.
- W4381381236 cites W4206255522 @default.
- W4381381236 cites W4210577761 @default.
- W4381381236 cites W4220663381 @default.
- W4381381236 cites W4221023518 @default.
- W4381381236 cites W4225670834 @default.
- W4381381236 cites W4229006968 @default.
- W4381381236 cites W4280563321 @default.
- W4381381236 cites W4280621297 @default.
- W4381381236 cites W4281954109 @default.
- W4381381236 cites W4283024748 @default.
- W4381381236 cites W4283071228 @default.
- W4381381236 cites W4283274313 @default.
- W4381381236 cites W4283827181 @default.
- W4381381236 cites W4289656235 @default.
- W4381381236 cites W4289667213 @default.
- W4381381236 cites W4290037635 @default.
- W4381381236 cites W4298325765 @default.
- W4381381236 cites W4308123916 @default.
- W4381381236 cites W4309705372 @default.
- W4381381236 cites W4313452400 @default.
- W4381381236 cites W4313826593 @default.
- W4381381236 cites W4322628398 @default.
- W4381381236 doi "https://doi.org/10.3233/jifs-231053" @default.
- W4381381236 hasPublicationYear "2023" @default.
- W4381381236 type Work @default.
- W4381381236 citedByCount "0" @default.
- W4381381236 crossrefType "journal-article" @default.
- W4381381236 hasAuthorship W4381381236A5021627418 @default.
- W4381381236 hasAuthorship W4381381236A5027630663 @default.
- W4381381236 hasAuthorship W4381381236A5049146326 @default.
- W4381381236 hasAuthorship W4381381236A5065873184 @default.
- W4381381236 hasConcept C124504099 @default.
- W4381381236 hasConcept C153180895 @default.
- W4381381236 hasConcept C154945302 @default.
- W4381381236 hasConcept C160633673 @default.
- W4381381236 hasConcept C205711294 @default.
- W4381381236 hasConcept C31601959 @default.
- W4381381236 hasConcept C31972630 @default.
- W4381381236 hasConcept C41008148 @default.
- W4381381236 hasConcept C89600930 @default.
- W4381381236 hasConceptScore W4381381236C124504099 @default.
- W4381381236 hasConceptScore W4381381236C153180895 @default.
- W4381381236 hasConceptScore W4381381236C154945302 @default.
- W4381381236 hasConceptScore W4381381236C160633673 @default.
- W4381381236 hasConceptScore W4381381236C205711294 @default.
- W4381381236 hasConceptScore W4381381236C31601959 @default.
- W4381381236 hasConceptScore W4381381236C31972630 @default.
- W4381381236 hasConceptScore W4381381236C41008148 @default.
- W4381381236 hasConceptScore W4381381236C89600930 @default.
- W4381381236 hasIssue "3" @default.
- W4381381236 hasLocation W43813812361 @default.
- W4381381236 hasOpenAccess W4381381236 @default.
- W4381381236 hasPrimaryLocation W43813812361 @default.
- W4381381236 hasRelatedWork W121273120 @default.
- W4381381236 hasRelatedWork W1669643531 @default.
- W4381381236 hasRelatedWork W2005437358 @default.
- W4381381236 hasRelatedWork W2008656436 @default.
- W4381381236 hasRelatedWork W2023558673 @default.
- W4381381236 hasRelatedWork W2048402902 @default.
- W4381381236 hasRelatedWork W2134924024 @default.
- W4381381236 hasRelatedWork W2337415362 @default.
- W4381381236 hasRelatedWork W2517104666 @default.
- W4381381236 hasRelatedWork W4312857205 @default.
- W4381381236 hasVolume "45" @default.
- W4381381236 isParatext "false" @default.
- W4381381236 isRetracted "false" @default.
- W4381381236 workType "article" @default.