Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381431175> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4381431175 abstract "Deep learning has become an effective detection method as coronavirus disease 2019 (COVID-19) incidences are increasing quickly. Nevertheless, finding the best accurate models for describing COVID-19 patients is difficult since comparing the outcomes of different data kinds and collecting procedures is difficult. X-ray scans from patients with verified COVID-19 illness and healthy people were combined to produce a dataset. The dataset's noisy, duplicated, and inappropriate characteristics harm the effectiveness of classification algorithms utilized in deep learning. As a result, the data should be pre-processed, and essential parts should be chosen to minimize the dimension of datasets by choosing the most crucial qualities while improving classification accuracy. Speed Up-Robust Feature (SURF) method is applied for the feature extraction from the dataset. The required features are selected after feature extraction based on Crow Search Optimization (CSO). The Bi-LSTM mechanism completes the classification procedure at the final stage. Quality metrics like accuracy, recall, precision, and F1-score are contrasted with some other cutting-edge classifiers. The findings demonstrate the effectiveness of the suggested paradigm for COVID-19 identification and classification, demonstrating high specificity, high sensitivity, and low computing complexity." @default.
- W4381431175 created "2023-06-21" @default.
- W4381431175 creator A5008352499 @default.
- W4381431175 creator A5031479539 @default.
- W4381431175 date "2023-06-01" @default.
- W4381431175 modified "2023-09-26" @default.
- W4381431175 title "An Improved Crow Search Optimization with Bi-LSTM Model for Identification and Classification of COVID-19 Infection from Chest X-Ray Images" @default.
- W4381431175 cites W2306115793 @default.
- W4381431175 cites W3012189167 @default.
- W4381431175 cites W3017403618 @default.
- W4381431175 cites W3027682070 @default.
- W4381431175 cites W3038744550 @default.
- W4381431175 cites W3040660552 @default.
- W4381431175 cites W3042426630 @default.
- W4381431175 cites W3044240928 @default.
- W4381431175 cites W3091978650 @default.
- W4381431175 cites W3121036322 @default.
- W4381431175 cites W3122499880 @default.
- W4381431175 cites W3147450857 @default.
- W4381431175 cites W3170900500 @default.
- W4381431175 cites W3181644688 @default.
- W4381431175 cites W4221053572 @default.
- W4381431175 cites W4226221651 @default.
- W4381431175 cites W4283379704 @default.
- W4381431175 cites W4365813082 @default.
- W4381431175 doi "https://doi.org/10.1016/j.aej.2023.06.052" @default.
- W4381431175 hasPublicationYear "2023" @default.
- W4381431175 type Work @default.
- W4381431175 citedByCount "0" @default.
- W4381431175 crossrefType "journal-article" @default.
- W4381431175 hasAuthorship W4381431175A5008352499 @default.
- W4381431175 hasAuthorship W4381431175A5031479539 @default.
- W4381431175 hasBestOaLocation W43814311751 @default.
- W4381431175 hasConcept C108583219 @default.
- W4381431175 hasConcept C116834253 @default.
- W4381431175 hasConcept C119857082 @default.
- W4381431175 hasConcept C124101348 @default.
- W4381431175 hasConcept C138885662 @default.
- W4381431175 hasConcept C142724271 @default.
- W4381431175 hasConcept C153180895 @default.
- W4381431175 hasConcept C154945302 @default.
- W4381431175 hasConcept C2776401178 @default.
- W4381431175 hasConcept C2779134260 @default.
- W4381431175 hasConcept C3008058167 @default.
- W4381431175 hasConcept C41008148 @default.
- W4381431175 hasConcept C41895202 @default.
- W4381431175 hasConcept C524204448 @default.
- W4381431175 hasConcept C52622490 @default.
- W4381431175 hasConcept C59822182 @default.
- W4381431175 hasConcept C71924100 @default.
- W4381431175 hasConcept C81669768 @default.
- W4381431175 hasConcept C86803240 @default.
- W4381431175 hasConceptScore W4381431175C108583219 @default.
- W4381431175 hasConceptScore W4381431175C116834253 @default.
- W4381431175 hasConceptScore W4381431175C119857082 @default.
- W4381431175 hasConceptScore W4381431175C124101348 @default.
- W4381431175 hasConceptScore W4381431175C138885662 @default.
- W4381431175 hasConceptScore W4381431175C142724271 @default.
- W4381431175 hasConceptScore W4381431175C153180895 @default.
- W4381431175 hasConceptScore W4381431175C154945302 @default.
- W4381431175 hasConceptScore W4381431175C2776401178 @default.
- W4381431175 hasConceptScore W4381431175C2779134260 @default.
- W4381431175 hasConceptScore W4381431175C3008058167 @default.
- W4381431175 hasConceptScore W4381431175C41008148 @default.
- W4381431175 hasConceptScore W4381431175C41895202 @default.
- W4381431175 hasConceptScore W4381431175C524204448 @default.
- W4381431175 hasConceptScore W4381431175C52622490 @default.
- W4381431175 hasConceptScore W4381431175C59822182 @default.
- W4381431175 hasConceptScore W4381431175C71924100 @default.
- W4381431175 hasConceptScore W4381431175C81669768 @default.
- W4381431175 hasConceptScore W4381431175C86803240 @default.
- W4381431175 hasLocation W43814311751 @default.
- W4381431175 hasOpenAccess W4381431175 @default.
- W4381431175 hasPrimaryLocation W43814311751 @default.
- W4381431175 hasRelatedWork W2016461833 @default.
- W4381431175 hasRelatedWork W2546942002 @default.
- W4381431175 hasRelatedWork W2733060750 @default.
- W4381431175 hasRelatedWork W2773120646 @default.
- W4381431175 hasRelatedWork W2774265021 @default.
- W4381431175 hasRelatedWork W2946016983 @default.
- W4381431175 hasRelatedWork W3156786002 @default.
- W4381431175 hasRelatedWork W3173596272 @default.
- W4381431175 hasRelatedWork W4317987726 @default.
- W4381431175 hasRelatedWork W4380611590 @default.
- W4381431175 isParatext "false" @default.
- W4381431175 isRetracted "false" @default.
- W4381431175 workType "article" @default.