Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381434413> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4381434413 endingPage "7281" @default.
- W4381434413 startingPage "7281" @default.
- W4381434413 abstract "Lung cancer is seen as one of the most common lung diseases. For the patients having symptoms, the presence of lung nodules is checked by using various imaging techniques. Pulmonary nodules are detected in most of the cases having symptoms. But identifying the type of the nodule and the categorization still remains as a challenge. After confirming the presence of a nodule (benign or malignant) it takes several other steps to identify its characteristics. Improved imaging methods produce results within a short span of time. Research works are being conducted to increase the overall efficiency of the system. The proposed system considers authentic data sources for the study. The benign and malignant samples are considered for the generation of realistic large image sets. The generation of a large data set with the help of a generative adversarial network (GAN) is the first part of the work. The generated images using GAN cannot be differentiated from the original images even by a trained radiologist. This proves the importance of images generated using GAN. A GAN is able to generate 1024 × 1024 resolutions for natural images. Real data images are used to finetune the SegNet output. Through transfer learning, these weights are transferred to the system for segmentation of the images. The training process use real and generated images, which improve theefficiency of the network. The original data from LUNA 16 was used to further generate benign and malignant samples using GAN. A total of 440 images and their augmented images were used for training the GAN, and it generated 1,001,000 images. Hence the overall efficiency of the system was improved. To verify the results, the same various combinations and methods were considered and tabulated with various parameters. Methods with SegNet, GAN, and other combinations were evaluated to verify the efficiency of the system. Receiver operating characteristics were also plotted and compared with the area under the curve for verification of the results." @default.
- W4381434413 created "2023-06-21" @default.
- W4381434413 creator A5044243371 @default.
- W4381434413 creator A5092220062 @default.
- W4381434413 date "2023-06-19" @default.
- W4381434413 modified "2023-10-14" @default.
- W4381434413 title "Improved Segmentation of Pulmonary Nodules Using Soft Computing Techniques with SegNet and Adversarial Networks" @default.
- W4381434413 cites W1997709301 @default.
- W4381434413 cites W2039010280 @default.
- W4381434413 cites W2225538867 @default.
- W4381434413 cites W2253429366 @default.
- W4381434413 cites W2666784499 @default.
- W4381434413 cites W2795126330 @default.
- W4381434413 cites W2890139949 @default.
- W4381434413 cites W2900465986 @default.
- W4381434413 cites W2908300827 @default.
- W4381434413 cites W2912989244 @default.
- W4381434413 cites W2930921659 @default.
- W4381434413 cites W2941712557 @default.
- W4381434413 cites W2952512768 @default.
- W4381434413 cites W2963905964 @default.
- W4381434413 cites W2982587597 @default.
- W4381434413 cites W3004865947 @default.
- W4381434413 cites W3007997946 @default.
- W4381434413 cites W3026701342 @default.
- W4381434413 cites W3092429907 @default.
- W4381434413 cites W3105747145 @default.
- W4381434413 cites W3194441438 @default.
- W4381434413 cites W4220951652 @default.
- W4381434413 cites W4281712998 @default.
- W4381434413 cites W4283271724 @default.
- W4381434413 doi "https://doi.org/10.3390/app13127281" @default.
- W4381434413 hasPublicationYear "2023" @default.
- W4381434413 type Work @default.
- W4381434413 citedByCount "0" @default.
- W4381434413 crossrefType "journal-article" @default.
- W4381434413 hasAuthorship W4381434413A5044243371 @default.
- W4381434413 hasAuthorship W4381434413A5092220062 @default.
- W4381434413 hasBestOaLocation W43814344131 @default.
- W4381434413 hasConcept C108583219 @default.
- W4381434413 hasConcept C142724271 @default.
- W4381434413 hasConcept C151730666 @default.
- W4381434413 hasConcept C153180895 @default.
- W4381434413 hasConcept C154945302 @default.
- W4381434413 hasConcept C2776256026 @default.
- W4381434413 hasConcept C2776731575 @default.
- W4381434413 hasConcept C2988773926 @default.
- W4381434413 hasConcept C31972630 @default.
- W4381434413 hasConcept C41008148 @default.
- W4381434413 hasConcept C51632099 @default.
- W4381434413 hasConcept C71924100 @default.
- W4381434413 hasConcept C86803240 @default.
- W4381434413 hasConcept C89600930 @default.
- W4381434413 hasConcept C94124525 @default.
- W4381434413 hasConceptScore W4381434413C108583219 @default.
- W4381434413 hasConceptScore W4381434413C142724271 @default.
- W4381434413 hasConceptScore W4381434413C151730666 @default.
- W4381434413 hasConceptScore W4381434413C153180895 @default.
- W4381434413 hasConceptScore W4381434413C154945302 @default.
- W4381434413 hasConceptScore W4381434413C2776256026 @default.
- W4381434413 hasConceptScore W4381434413C2776731575 @default.
- W4381434413 hasConceptScore W4381434413C2988773926 @default.
- W4381434413 hasConceptScore W4381434413C31972630 @default.
- W4381434413 hasConceptScore W4381434413C41008148 @default.
- W4381434413 hasConceptScore W4381434413C51632099 @default.
- W4381434413 hasConceptScore W4381434413C71924100 @default.
- W4381434413 hasConceptScore W4381434413C86803240 @default.
- W4381434413 hasConceptScore W4381434413C89600930 @default.
- W4381434413 hasConceptScore W4381434413C94124525 @default.
- W4381434413 hasIssue "12" @default.
- W4381434413 hasLocation W43814344131 @default.
- W4381434413 hasOpenAccess W4381434413 @default.
- W4381434413 hasPrimaryLocation W43814344131 @default.
- W4381434413 hasRelatedWork W1669643531 @default.
- W4381434413 hasRelatedWork W2005437358 @default.
- W4381434413 hasRelatedWork W2008656436 @default.
- W4381434413 hasRelatedWork W2039154422 @default.
- W4381434413 hasRelatedWork W2517104666 @default.
- W4381434413 hasRelatedWork W2790662084 @default.
- W4381434413 hasRelatedWork W2948658236 @default.
- W4381434413 hasRelatedWork W3043252291 @default.
- W4381434413 hasRelatedWork W3144574764 @default.
- W4381434413 hasRelatedWork W4293211451 @default.
- W4381434413 hasVolume "13" @default.
- W4381434413 isParatext "false" @default.
- W4381434413 isRetracted "false" @default.
- W4381434413 workType "article" @default.