Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381435645> ?p ?o ?g. }
- W4381435645 endingPage "101628" @default.
- W4381435645 startingPage "101628" @default.
- W4381435645 abstract "Web applications are paramount tools for facilitating services providing in the modern world. Unfortunately, the tremendous growth in the web application usage has resulted in a rise in cyberattacks. Cross-site scripting (XSS) is one of the most frequent cyber security attack vectors that threaten the end user as well as the service provider with the same degree of severity. Recently, an obvious increase of the Machine learning and deep learning ML/DL techniques adoption in XSS attack detection. The goal of this review is to come with a special attention and highlight of Machine learning and deep learning approaches. Thus, in this paper, we present a review of recent advances applied in ML/DL for XSS attack detection and classification. The existing proposed ML/DL approaches for XSS attack detection are analyzed and taxonomized comprehensively in terms of domain areas, data preprocessing, feature extraction, feature selection, dimensionality reduction, Data imbalance, performance metrics, datasets, and data types. Our analysis reveals that the way of how the XSS data is preprocessed considerably impacts the performance and the attack detection models. Proposing a full preprocessing cycle reveals how various ML/DL approaches for XSS attacks detection take advantage of different input data preprocessing techniques. The most used ML/DL and preprocessing stages have also been identified. The limitations of existing ML/DL-based XSS attack detection mechanisms are highlighted to identify the potential gaps and future trends." @default.
- W4381435645 created "2023-06-21" @default.
- W4381435645 creator A5011013398 @default.
- W4381435645 creator A5026258736 @default.
- W4381435645 creator A5055285340 @default.
- W4381435645 creator A5092220375 @default.
- W4381435645 date "2023-06-01" @default.
- W4381435645 modified "2023-09-26" @default.
- W4381435645 title "Machine and Deep Learning-based XSS Detection Approaches: A Systematic Literature Review" @default.
- W4381435645 cites W1554829397 @default.
- W4381435645 cites W1663388364 @default.
- W4381435645 cites W1832693441 @default.
- W4381435645 cites W2016441490 @default.
- W4381435645 cites W2064675550 @default.
- W4381435645 cites W2079735306 @default.
- W4381435645 cites W2167101736 @default.
- W4381435645 cites W2558960030 @default.
- W4381435645 cites W2565032187 @default.
- W4381435645 cites W2732560875 @default.
- W4381435645 cites W2746644282 @default.
- W4381435645 cites W2770225980 @default.
- W4381435645 cites W2786083209 @default.
- W4381435645 cites W2805553748 @default.
- W4381435645 cites W2809872621 @default.
- W4381435645 cites W2900519066 @default.
- W4381435645 cites W2911183593 @default.
- W4381435645 cites W2913334908 @default.
- W4381435645 cites W2921353139 @default.
- W4381435645 cites W2936625782 @default.
- W4381435645 cites W2949856406 @default.
- W4381435645 cites W2961730189 @default.
- W4381435645 cites W2963178695 @default.
- W4381435645 cites W2964150020 @default.
- W4381435645 cites W2967963259 @default.
- W4381435645 cites W2970293835 @default.
- W4381435645 cites W2971724044 @default.
- W4381435645 cites W2972622000 @default.
- W4381435645 cites W2973954733 @default.
- W4381435645 cites W2979543333 @default.
- W4381435645 cites W2979950223 @default.
- W4381435645 cites W2986807064 @default.
- W4381435645 cites W2994922757 @default.
- W4381435645 cites W2997044556 @default.
- W4381435645 cites W2998778465 @default.
- W4381435645 cites W3004993122 @default.
- W4381435645 cites W3013734981 @default.
- W4381435645 cites W3021279504 @default.
- W4381435645 cites W3022718070 @default.
- W4381435645 cites W3022814669 @default.
- W4381435645 cites W3033748457 @default.
- W4381435645 cites W3039807308 @default.
- W4381435645 cites W3082299611 @default.
- W4381435645 cites W3092220191 @default.
- W4381435645 cites W3093554878 @default.
- W4381435645 cites W3094810545 @default.
- W4381435645 cites W3096831136 @default.
- W4381435645 cites W3102476541 @default.
- W4381435645 cites W3105981741 @default.
- W4381435645 cites W3112739278 @default.
- W4381435645 cites W3117954815 @default.
- W4381435645 cites W3120667286 @default.
- W4381435645 cites W3123601247 @default.
- W4381435645 cites W3128187337 @default.
- W4381435645 cites W3132191748 @default.
- W4381435645 cites W3133124259 @default.
- W4381435645 cites W3138547989 @default.
- W4381435645 cites W3140854437 @default.
- W4381435645 cites W3155418077 @default.
- W4381435645 cites W3199141370 @default.
- W4381435645 cites W3211949027 @default.
- W4381435645 cites W3214771494 @default.
- W4381435645 cites W4214747253 @default.
- W4381435645 cites W4220844189 @default.
- W4381435645 cites W4223558833 @default.
- W4381435645 cites W4224317173 @default.
- W4381435645 cites W4226270280 @default.
- W4381435645 cites W4239510810 @default.
- W4381435645 cites W4240381657 @default.
- W4381435645 cites W4250664506 @default.
- W4381435645 cites W4285005900 @default.
- W4381435645 cites W4286587341 @default.
- W4381435645 cites W4296079469 @default.
- W4381435645 cites W4306392803 @default.
- W4381435645 cites W4307571103 @default.
- W4381435645 cites W4309553431 @default.
- W4381435645 cites W4317754160 @default.
- W4381435645 cites W4319660018 @default.
- W4381435645 cites W4360618510 @default.
- W4381435645 doi "https://doi.org/10.1016/j.jksuci.2023.101628" @default.
- W4381435645 hasPublicationYear "2023" @default.
- W4381435645 type Work @default.
- W4381435645 citedByCount "0" @default.
- W4381435645 crossrefType "journal-article" @default.
- W4381435645 hasAuthorship W4381435645A5011013398 @default.
- W4381435645 hasAuthorship W4381435645A5026258736 @default.
- W4381435645 hasAuthorship W4381435645A5055285340 @default.
- W4381435645 hasAuthorship W4381435645A5092220375 @default.
- W4381435645 hasBestOaLocation W43814356451 @default.