Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381466443> ?p ?o ?g. }
- W4381466443 endingPage "48934" @default.
- W4381466443 startingPage "48924" @default.
- W4381466443 abstract "Improving the signal-to-noise ratio and suppressing random noise in seismic data is critical for high-precision processing. Although deep learning-based algorithms have gained popularity as denoising methods, they suffer from poor generalization ability, resulting in high training set construction cost and computation cost. To address this problem, we propose an unsupervised learning-based denoising method that includes an improved denoising strategy based on local similarity and replacement, a corresponding training method, and an improved network based on UNet. Our training method takes advantage of network convergence and allows direct training on the test region, effectively solving the problems associated with denoising methods using generalization ability while improving training performance. In addition, our network is specifically designed for the training method and incorporates various improvements that could further enhance the training effectiveness. Our method outperforms traditional denoising methods, as demonstrated by tests on synthetic and field data, with superior performance in random noise attenuation and reflection event reconstruction." @default.
- W4381466443 created "2023-06-22" @default.
- W4381466443 creator A5012227580 @default.
- W4381466443 creator A5012711458 @default.
- W4381466443 creator A5038199655 @default.
- W4381466443 creator A5065928396 @default.
- W4381466443 creator A5089815318 @default.
- W4381466443 date "2023-01-01" @default.
- W4381466443 modified "2023-09-27" @default.
- W4381466443 title "Unsupervised Seismic Random Noise Suppression Based on Local Similarity and Replacement Strategy" @default.
- W4381466443 cites W1480172732 @default.
- W4381466443 cites W1547477044 @default.
- W4381466443 cites W1901616594 @default.
- W4381466443 cites W1973048907 @default.
- W4381466443 cites W1988391697 @default.
- W4381466443 cites W2000982976 @default.
- W4381466443 cites W2020205028 @default.
- W4381466443 cites W2043112821 @default.
- W4381466443 cites W2076393573 @default.
- W4381466443 cites W2087995567 @default.
- W4381466443 cites W2120390927 @default.
- W4381466443 cites W2141953966 @default.
- W4381466443 cites W2146619110 @default.
- W4381466443 cites W2165412225 @default.
- W4381466443 cites W2177432006 @default.
- W4381466443 cites W2294362001 @default.
- W4381466443 cites W2318528603 @default.
- W4381466443 cites W2344237992 @default.
- W4381466443 cites W2403089413 @default.
- W4381466443 cites W2412205031 @default.
- W4381466443 cites W2468203014 @default.
- W4381466443 cites W2517910458 @default.
- W4381466443 cites W2587859039 @default.
- W4381466443 cites W2612534675 @default.
- W4381466443 cites W2614600089 @default.
- W4381466443 cites W2625057151 @default.
- W4381466443 cites W2763474475 @default.
- W4381466443 cites W2792361187 @default.
- W4381466443 cites W2802726551 @default.
- W4381466443 cites W2890172403 @default.
- W4381466443 cites W2899651173 @default.
- W4381466443 cites W2902519853 @default.
- W4381466443 cites W2904005001 @default.
- W4381466443 cites W2972418846 @default.
- W4381466443 cites W3015071074 @default.
- W4381466443 cites W3046473778 @default.
- W4381466443 cites W3095036472 @default.
- W4381466443 cites W3102348318 @default.
- W4381466443 cites W3127074460 @default.
- W4381466443 cites W3128450524 @default.
- W4381466443 cites W3184393302 @default.
- W4381466443 cites W3198590184 @default.
- W4381466443 cites W3198883669 @default.
- W4381466443 cites W3216588652 @default.
- W4381466443 cites W4200120832 @default.
- W4381466443 cites W4205599898 @default.
- W4381466443 cites W4240087098 @default.
- W4381466443 cites W4281480335 @default.
- W4381466443 doi "https://doi.org/10.1109/access.2023.3272905" @default.
- W4381466443 hasPublicationYear "2023" @default.
- W4381466443 type Work @default.
- W4381466443 citedByCount "0" @default.
- W4381466443 crossrefType "journal-article" @default.
- W4381466443 hasAuthorship W4381466443A5012227580 @default.
- W4381466443 hasAuthorship W4381466443A5012711458 @default.
- W4381466443 hasAuthorship W4381466443A5038199655 @default.
- W4381466443 hasAuthorship W4381466443A5065928396 @default.
- W4381466443 hasAuthorship W4381466443A5089815318 @default.
- W4381466443 hasBestOaLocation W43814664431 @default.
- W4381466443 hasConcept C103278499 @default.
- W4381466443 hasConcept C115961682 @default.
- W4381466443 hasConcept C119857082 @default.
- W4381466443 hasConcept C124101348 @default.
- W4381466443 hasConcept C134306372 @default.
- W4381466443 hasConcept C153180895 @default.
- W4381466443 hasConcept C154945302 @default.
- W4381466443 hasConcept C162324750 @default.
- W4381466443 hasConcept C163294075 @default.
- W4381466443 hasConcept C177148314 @default.
- W4381466443 hasConcept C2777303404 @default.
- W4381466443 hasConcept C33923547 @default.
- W4381466443 hasConcept C41008148 @default.
- W4381466443 hasConcept C50522688 @default.
- W4381466443 hasConcept C99498987 @default.
- W4381466443 hasConceptScore W4381466443C103278499 @default.
- W4381466443 hasConceptScore W4381466443C115961682 @default.
- W4381466443 hasConceptScore W4381466443C119857082 @default.
- W4381466443 hasConceptScore W4381466443C124101348 @default.
- W4381466443 hasConceptScore W4381466443C134306372 @default.
- W4381466443 hasConceptScore W4381466443C153180895 @default.
- W4381466443 hasConceptScore W4381466443C154945302 @default.
- W4381466443 hasConceptScore W4381466443C162324750 @default.
- W4381466443 hasConceptScore W4381466443C163294075 @default.
- W4381466443 hasConceptScore W4381466443C177148314 @default.
- W4381466443 hasConceptScore W4381466443C2777303404 @default.
- W4381466443 hasConceptScore W4381466443C33923547 @default.
- W4381466443 hasConceptScore W4381466443C41008148 @default.
- W4381466443 hasConceptScore W4381466443C50522688 @default.