Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381470788> ?p ?o ?g. }
- W4381470788 endingPage "107087" @default.
- W4381470788 startingPage "107087" @default.
- W4381470788 abstract "Internal hidden defects such as delamination and voids are common distress of concrete slabs and the localization of these defects is important for structural safety. This paper develops a damage inspection method that is feasible for locating and imaging internal defects of concrete slabs based on deep learning of impact-caused vibration signals. To alleviate the problem of low efficiency of manual signal collection, a prototype of mobile detection system is developed for the automatic generation and acquisition of vibration signals. Two optimized deep learning models in the framework convolutional neural network (CNN) are proposed for 1D time series signal and 2D time-frequency spectrogram to address the problems of low recognition accuracy and long training time of the traditional network, where the principal component analysis (PCA) and squeeze and excitation (SE) modules are incorporated respectively for a better feature learning and extraction of vibration signals of internal defects. The softmax layer is added in the networks to calculate the state probability value for the completion of damage contour maps. The network proposed in this paper is used to systematically compare the training and recognition effects of the data collected by contact senor (accelerometer) and air coupled sensor (microphone). The experiments show that the detection accuracy of the one-dimensional (1D) and two-dimensional (2D) network based on the accelerometer-acquired data reaches 90.4% and 93.4%, respectively. The generalizability of trained models is also validated based on the independent dataset from other research and actual concrete floor of a multistorey building. In the future, the prototype of the hardware system can be further improved by embedding GPS information to realize the real-time automatic localization of hidden defects of engineering structures." @default.
- W4381470788 created "2023-06-22" @default.
- W4381470788 creator A5008929449 @default.
- W4381470788 creator A5078679262 @default.
- W4381470788 date "2023-10-01" @default.
- W4381470788 modified "2023-10-18" @default.
- W4381470788 title "Localization and imaging of internal hidden defects in concrete slabs based on deep learning of vibration signals" @default.
- W4381470788 cites W1974145284 @default.
- W4381470788 cites W2035912441 @default.
- W4381470788 cites W2048385740 @default.
- W4381470788 cites W2109987419 @default.
- W4381470788 cites W2117063635 @default.
- W4381470788 cites W2130027546 @default.
- W4381470788 cites W2131929809 @default.
- W4381470788 cites W2145577187 @default.
- W4381470788 cites W2286169661 @default.
- W4381470788 cites W2562622111 @default.
- W4381470788 cites W2598457882 @default.
- W4381470788 cites W2767522444 @default.
- W4381470788 cites W2770456481 @default.
- W4381470788 cites W2776541877 @default.
- W4381470788 cites W2791045153 @default.
- W4381470788 cites W2801492038 @default.
- W4381470788 cites W2809458496 @default.
- W4381470788 cites W2888803582 @default.
- W4381470788 cites W2981211609 @default.
- W4381470788 cites W2994408221 @default.
- W4381470788 cites W2997119345 @default.
- W4381470788 cites W3010038525 @default.
- W4381470788 cites W3022530230 @default.
- W4381470788 cites W3043733861 @default.
- W4381470788 cites W3044944261 @default.
- W4381470788 cites W3083054455 @default.
- W4381470788 cites W3098603955 @default.
- W4381470788 cites W3100852900 @default.
- W4381470788 cites W3164097270 @default.
- W4381470788 cites W3210379830 @default.
- W4381470788 cites W4200013422 @default.
- W4381470788 cites W4223895421 @default.
- W4381470788 cites W4224080777 @default.
- W4381470788 doi "https://doi.org/10.1016/j.jobe.2023.107087" @default.
- W4381470788 hasPublicationYear "2023" @default.
- W4381470788 type Work @default.
- W4381470788 citedByCount "1" @default.
- W4381470788 crossrefType "journal-article" @default.
- W4381470788 hasAuthorship W4381470788A5008929449 @default.
- W4381470788 hasAuthorship W4381470788A5078679262 @default.
- W4381470788 hasConcept C108583219 @default.
- W4381470788 hasConcept C111919701 @default.
- W4381470788 hasConcept C121332964 @default.
- W4381470788 hasConcept C127413603 @default.
- W4381470788 hasConcept C138885662 @default.
- W4381470788 hasConcept C153180895 @default.
- W4381470788 hasConcept C154945302 @default.
- W4381470788 hasConcept C188441871 @default.
- W4381470788 hasConcept C198394728 @default.
- W4381470788 hasConcept C199360897 @default.
- W4381470788 hasConcept C24890656 @default.
- W4381470788 hasConcept C2776401178 @default.
- W4381470788 hasConcept C2779843651 @default.
- W4381470788 hasConcept C31972630 @default.
- W4381470788 hasConcept C41008148 @default.
- W4381470788 hasConcept C41895202 @default.
- W4381470788 hasConcept C50644808 @default.
- W4381470788 hasConcept C52622490 @default.
- W4381470788 hasConcept C81363708 @default.
- W4381470788 hasConcept C89805583 @default.
- W4381470788 hasConceptScore W4381470788C108583219 @default.
- W4381470788 hasConceptScore W4381470788C111919701 @default.
- W4381470788 hasConceptScore W4381470788C121332964 @default.
- W4381470788 hasConceptScore W4381470788C127413603 @default.
- W4381470788 hasConceptScore W4381470788C138885662 @default.
- W4381470788 hasConceptScore W4381470788C153180895 @default.
- W4381470788 hasConceptScore W4381470788C154945302 @default.
- W4381470788 hasConceptScore W4381470788C188441871 @default.
- W4381470788 hasConceptScore W4381470788C198394728 @default.
- W4381470788 hasConceptScore W4381470788C199360897 @default.
- W4381470788 hasConceptScore W4381470788C24890656 @default.
- W4381470788 hasConceptScore W4381470788C2776401178 @default.
- W4381470788 hasConceptScore W4381470788C2779843651 @default.
- W4381470788 hasConceptScore W4381470788C31972630 @default.
- W4381470788 hasConceptScore W4381470788C41008148 @default.
- W4381470788 hasConceptScore W4381470788C41895202 @default.
- W4381470788 hasConceptScore W4381470788C50644808 @default.
- W4381470788 hasConceptScore W4381470788C52622490 @default.
- W4381470788 hasConceptScore W4381470788C81363708 @default.
- W4381470788 hasConceptScore W4381470788C89805583 @default.
- W4381470788 hasFunder F4320321001 @default.
- W4381470788 hasLocation W43814707881 @default.
- W4381470788 hasOpenAccess W4381470788 @default.
- W4381470788 hasPrimaryLocation W43814707881 @default.
- W4381470788 hasRelatedWork W2899027234 @default.
- W4381470788 hasRelatedWork W2997424368 @default.
- W4381470788 hasRelatedWork W3029198973 @default.
- W4381470788 hasRelatedWork W3133861977 @default.
- W4381470788 hasRelatedWork W3167935049 @default.
- W4381470788 hasRelatedWork W3193565141 @default.
- W4381470788 hasRelatedWork W4220732972 @default.