Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381480400> ?p ?o ?g. }
- W4381480400 endingPage "129375" @default.
- W4381480400 startingPage "129375" @default.
- W4381480400 abstract "Biorefinery can be promoted by building accurate machine learning models. This work proposed a strategy to enhance model's generalization ability and overcome insufficient data conditions for mixed sugar fermentation simulation. Multiple inputs single output models, using initial glucose, initial xylose, and time together as inputs, have higher generalization ability than single input single output models with time as sole input in predicting glucose, xylose, ethanol, or biomass separately. Multiple inputs multiple outputs models, integrating outputs, enhanced model accuracy and resulted in an average R2 at 0.99. To overcome data insufficiency conditions, consensus yeast (CY) model, through consolidating data from 4 yeasts, obtained R2 at 0.90. By adjusting the pretrained CY model, the model can save more than 50% data and get R2 at 0.95 and 0.93 for yeast and bacterial fermentation simulation. The strategy can expand the application range and save costs of data curation for ANN models." @default.
- W4381480400 created "2023-06-22" @default.
- W4381480400 creator A5018875913 @default.
- W4381480400 creator A5019657497 @default.
- W4381480400 creator A5024052846 @default.
- W4381480400 creator A5035670276 @default.
- W4381480400 creator A5048675759 @default.
- W4381480400 creator A5052570866 @default.
- W4381480400 creator A5066670410 @default.
- W4381480400 creator A5067112096 @default.
- W4381480400 creator A5088205358 @default.
- W4381480400 creator A5088583611 @default.
- W4381480400 date "2023-06-01" @default.
- W4381480400 modified "2023-09-25" @default.
- W4381480400 title "Developing high-dimensional machine learning models to improve generalization ability and overcome data insufficiency for mixed sugar fermentation simulation" @default.
- W4381480400 cites W2024424485 @default.
- W4381480400 cites W2038842581 @default.
- W4381480400 cites W2090005188 @default.
- W4381480400 cites W2122782494 @default.
- W4381480400 cites W2509184164 @default.
- W4381480400 cites W2511871570 @default.
- W4381480400 cites W2742534361 @default.
- W4381480400 cites W2746679611 @default.
- W4381480400 cites W2753096181 @default.
- W4381480400 cites W2892742313 @default.
- W4381480400 cites W2899924318 @default.
- W4381480400 cites W2920156092 @default.
- W4381480400 cites W2979549919 @default.
- W4381480400 cites W2979770672 @default.
- W4381480400 cites W2994115888 @default.
- W4381480400 cites W2998788451 @default.
- W4381480400 cites W3000434541 @default.
- W4381480400 cites W3022542197 @default.
- W4381480400 cites W3037610215 @default.
- W4381480400 cites W3087569395 @default.
- W4381480400 cites W3087978853 @default.
- W4381480400 cites W3092885367 @default.
- W4381480400 cites W3157309464 @default.
- W4381480400 cites W3177828909 @default.
- W4381480400 cites W3191950921 @default.
- W4381480400 cites W3206212050 @default.
- W4381480400 cites W3210712079 @default.
- W4381480400 cites W3211718387 @default.
- W4381480400 cites W4200275932 @default.
- W4381480400 cites W4221128536 @default.
- W4381480400 cites W4224315927 @default.
- W4381480400 cites W4308922651 @default.
- W4381480400 doi "https://doi.org/10.1016/j.biortech.2023.129375" @default.
- W4381480400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37352987" @default.
- W4381480400 hasPublicationYear "2023" @default.
- W4381480400 type Work @default.
- W4381480400 citedByCount "0" @default.
- W4381480400 crossrefType "journal-article" @default.
- W4381480400 hasAuthorship W4381480400A5018875913 @default.
- W4381480400 hasAuthorship W4381480400A5019657497 @default.
- W4381480400 hasAuthorship W4381480400A5024052846 @default.
- W4381480400 hasAuthorship W4381480400A5035670276 @default.
- W4381480400 hasAuthorship W4381480400A5048675759 @default.
- W4381480400 hasAuthorship W4381480400A5052570866 @default.
- W4381480400 hasAuthorship W4381480400A5066670410 @default.
- W4381480400 hasAuthorship W4381480400A5067112096 @default.
- W4381480400 hasAuthorship W4381480400A5088205358 @default.
- W4381480400 hasAuthorship W4381480400A5088583611 @default.
- W4381480400 hasConcept C100544194 @default.
- W4381480400 hasConcept C111919701 @default.
- W4381480400 hasConcept C119857082 @default.
- W4381480400 hasConcept C127413603 @default.
- W4381480400 hasConcept C134306372 @default.
- W4381480400 hasConcept C146978453 @default.
- W4381480400 hasConcept C150903083 @default.
- W4381480400 hasConcept C154945302 @default.
- W4381480400 hasConcept C177148314 @default.
- W4381480400 hasConcept C183696295 @default.
- W4381480400 hasConcept C185592680 @default.
- W4381480400 hasConcept C204323151 @default.
- W4381480400 hasConcept C2777108408 @default.
- W4381480400 hasConcept C2780294150 @default.
- W4381480400 hasConcept C2780301381 @default.
- W4381480400 hasConcept C33923547 @default.
- W4381480400 hasConcept C41008148 @default.
- W4381480400 hasConcept C53991642 @default.
- W4381480400 hasConcept C55493867 @default.
- W4381480400 hasConcept C86803240 @default.
- W4381480400 hasConcept C98045186 @default.
- W4381480400 hasConceptScore W4381480400C100544194 @default.
- W4381480400 hasConceptScore W4381480400C111919701 @default.
- W4381480400 hasConceptScore W4381480400C119857082 @default.
- W4381480400 hasConceptScore W4381480400C127413603 @default.
- W4381480400 hasConceptScore W4381480400C134306372 @default.
- W4381480400 hasConceptScore W4381480400C146978453 @default.
- W4381480400 hasConceptScore W4381480400C150903083 @default.
- W4381480400 hasConceptScore W4381480400C154945302 @default.
- W4381480400 hasConceptScore W4381480400C177148314 @default.
- W4381480400 hasConceptScore W4381480400C183696295 @default.
- W4381480400 hasConceptScore W4381480400C185592680 @default.
- W4381480400 hasConceptScore W4381480400C204323151 @default.
- W4381480400 hasConceptScore W4381480400C2777108408 @default.
- W4381480400 hasConceptScore W4381480400C2780294150 @default.