Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381489904> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4381489904 endingPage "107" @default.
- W4381489904 startingPage "87" @default.
- W4381489904 abstract "Human facial expressions are a mirror of human thoughts, feelings and human mental states. Facial Emotion Recognition (FER) can provide a social advantage. It's like a form of silent communication. Emotion recognition technology will help to automatically detect the patient's emotions during illness and avoid external acts such as suicide, mental disorders or mental health problems. If we understand all the signs of emotions, we can solve many problems for human beings. Emotion recognition and detection is also useful for healthcare. Through emotional state recognition, we can get information about patients. Recognizing a patient's emotions for a specific disease using artificial intelligence techniques is a challenging task. This article presents recognition, detection and methods for mental health patients. Using artificial intelligence techniques with an emotion detection library and matching emotions to mental health. This article uses an emotional scale to show that there is a link between negative emotions and mental health problems. In this paper, she provided a comprehensive review of AI-based FER methodology, including datasets, feature extraction techniques, algorithms, and recent breakthroughs with their applications in facial expression recognition. In the future, all aspects of FER for different ages would significantly influence the health research community." @default.
- W4381489904 created "2023-06-22" @default.
- W4381489904 creator A5058385222 @default.
- W4381489904 date "2023-06-20" @default.
- W4381489904 modified "2023-09-25" @default.
- W4381489904 title "EMOTION RECOGNITION FOR MENTAL HEALTH PREDICTION USING AI TECHNIQUES: AN OVERVIEW" @default.
- W4381489904 doi "https://doi.org/10.26483/ijarcs.v14i3.6975" @default.
- W4381489904 hasPublicationYear "2023" @default.
- W4381489904 type Work @default.
- W4381489904 citedByCount "0" @default.
- W4381489904 crossrefType "journal-article" @default.
- W4381489904 hasAuthorship W4381489904A5058385222 @default.
- W4381489904 hasBestOaLocation W43814899041 @default.
- W4381489904 hasConcept C118552586 @default.
- W4381489904 hasConcept C122980154 @default.
- W4381489904 hasConcept C134362201 @default.
- W4381489904 hasConcept C138885662 @default.
- W4381489904 hasConcept C154945302 @default.
- W4381489904 hasConcept C15744967 @default.
- W4381489904 hasConcept C162324750 @default.
- W4381489904 hasConcept C174107131 @default.
- W4381489904 hasConcept C187736073 @default.
- W4381489904 hasConcept C195704467 @default.
- W4381489904 hasConcept C206310091 @default.
- W4381489904 hasConcept C2776401178 @default.
- W4381489904 hasConcept C2777438025 @default.
- W4381489904 hasConcept C2780451532 @default.
- W4381489904 hasConcept C2988148770 @default.
- W4381489904 hasConcept C41008148 @default.
- W4381489904 hasConcept C41895202 @default.
- W4381489904 hasConcept C6438553 @default.
- W4381489904 hasConcept C77805123 @default.
- W4381489904 hasConceptScore W4381489904C118552586 @default.
- W4381489904 hasConceptScore W4381489904C122980154 @default.
- W4381489904 hasConceptScore W4381489904C134362201 @default.
- W4381489904 hasConceptScore W4381489904C138885662 @default.
- W4381489904 hasConceptScore W4381489904C154945302 @default.
- W4381489904 hasConceptScore W4381489904C15744967 @default.
- W4381489904 hasConceptScore W4381489904C162324750 @default.
- W4381489904 hasConceptScore W4381489904C174107131 @default.
- W4381489904 hasConceptScore W4381489904C187736073 @default.
- W4381489904 hasConceptScore W4381489904C195704467 @default.
- W4381489904 hasConceptScore W4381489904C206310091 @default.
- W4381489904 hasConceptScore W4381489904C2776401178 @default.
- W4381489904 hasConceptScore W4381489904C2777438025 @default.
- W4381489904 hasConceptScore W4381489904C2780451532 @default.
- W4381489904 hasConceptScore W4381489904C2988148770 @default.
- W4381489904 hasConceptScore W4381489904C41008148 @default.
- W4381489904 hasConceptScore W4381489904C41895202 @default.
- W4381489904 hasConceptScore W4381489904C6438553 @default.
- W4381489904 hasConceptScore W4381489904C77805123 @default.
- W4381489904 hasIssue "03" @default.
- W4381489904 hasLocation W43814899041 @default.
- W4381489904 hasOpenAccess W4381489904 @default.
- W4381489904 hasPrimaryLocation W43814899041 @default.
- W4381489904 hasRelatedWork W2115839364 @default.
- W4381489904 hasRelatedWork W2505228240 @default.
- W4381489904 hasRelatedWork W2552197931 @default.
- W4381489904 hasRelatedWork W2900483619 @default.
- W4381489904 hasRelatedWork W2958967066 @default.
- W4381489904 hasRelatedWork W3090814224 @default.
- W4381489904 hasRelatedWork W3090909433 @default.
- W4381489904 hasRelatedWork W4313226878 @default.
- W4381489904 hasRelatedWork W4321843433 @default.
- W4381489904 hasRelatedWork W4377704381 @default.
- W4381489904 hasVolume "14" @default.
- W4381489904 isParatext "false" @default.
- W4381489904 isRetracted "false" @default.
- W4381489904 workType "article" @default.