Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381490221> ?p ?o ?g. }
- W4381490221 abstract "Scoliosis is a disease estimated to affect more than 8% of adults in the United States. It is diagnosed with use of radiography by means of manual measurement of the angle between maximally tilted vertebrae on a radiograph (ie, the Cobb angle). However, these measurements are time-consuming, limiting their use in scoliosis surgical planning and postoperative monitoring. In this retrospective study, a pipeline (using the SpineTK architecture) was developed that was trained, validated, and tested on 1310 anterior-posterior images obtained with a low-dose stereoradiographic scanning system and radiographs obtained in patients with suspected scoliosis to automatically measure Cobb angles. The images were obtained at six centers (2005–2020). The algorithm measured Cobb angles on hold-out internal (n = 460) and external (n = 161) test sets with less than 2° error (intraclass correlation coefficient, 0.96) compared with ground truth measurements by two experienced radiologists. Measurements, produced in less than 0.5 second, did not differ significantly (P = .05 cutoff) from ground truth measurements, regardless of the presence or absence of surgical hardware (P = .80), age (P = .58), sex (P = .83), body mass index (P = .63), scoliosis severity (P = .44), or image type (low-dose stereoradiographic image vs radiograph; P = .51) in the patient. These findings suggest that the algorithm is highly robust across different clinical characteristics. Given its automated, rapid, and accurate measurements, this network may be used for monitoring scoliosis progression in patients. Keywords: Cobb Angle, Convolutional Neural Network, Deep Learning Algorithms, Pediatrics, Machine Learning Algorithms, Scoliosis, Spine Supplemental material is available for this article. © RSNA, 2023" @default.
- W4381490221 created "2023-06-22" @default.
- W4381490221 creator A5001996891 @default.
- W4381490221 creator A5005560434 @default.
- W4381490221 creator A5021492844 @default.
- W4381490221 creator A5028046389 @default.
- W4381490221 creator A5034559958 @default.
- W4381490221 creator A5034872702 @default.
- W4381490221 creator A5036795263 @default.
- W4381490221 creator A5041495189 @default.
- W4381490221 creator A5043480552 @default.
- W4381490221 creator A5055313777 @default.
- W4381490221 creator A5071475443 @default.
- W4381490221 creator A5075545622 @default.
- W4381490221 creator A5086115833 @default.
- W4381490221 creator A5089815214 @default.
- W4381490221 date "2023-07-01" @default.
- W4381490221 modified "2023-09-26" @default.
- W4381490221 title "Conquering the Cobb Angle: A Deep Learning Algorithm for Automated, Hardware-Invariant Measurement of Cobb Angle on Radiographs in Patients with Scoliosis" @default.
- W4381490221 cites W1508603344 @default.
- W4381490221 cites W1732199838 @default.
- W4381490221 cites W1983469525 @default.
- W4381490221 cites W2061411732 @default.
- W4381490221 cites W2082727639 @default.
- W4381490221 cites W2101224731 @default.
- W4381490221 cites W2101512156 @default.
- W4381490221 cites W2142568044 @default.
- W4381490221 cites W2155669631 @default.
- W4381490221 cites W2245256444 @default.
- W4381490221 cites W2320428286 @default.
- W4381490221 cites W2327037637 @default.
- W4381490221 cites W2898193142 @default.
- W4381490221 cites W2914439301 @default.
- W4381490221 cites W2916452242 @default.
- W4381490221 cites W2943897738 @default.
- W4381490221 cites W2959813592 @default.
- W4381490221 cites W2961358676 @default.
- W4381490221 cites W2969254359 @default.
- W4381490221 cites W3109507704 @default.
- W4381490221 cites W3152612178 @default.
- W4381490221 cites W3178839942 @default.
- W4381490221 cites W3211935343 @default.
- W4381490221 cites W4210484029 @default.
- W4381490221 cites W4211091882 @default.
- W4381490221 cites W4212850805 @default.
- W4381490221 cites W4220857012 @default.
- W4381490221 cites W4225270188 @default.
- W4381490221 doi "https://doi.org/10.1148/ryai.220158" @default.
- W4381490221 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37529207" @default.
- W4381490221 hasPublicationYear "2023" @default.
- W4381490221 type Work @default.
- W4381490221 citedByCount "0" @default.
- W4381490221 crossrefType "journal-article" @default.
- W4381490221 hasAuthorship W4381490221A5001996891 @default.
- W4381490221 hasAuthorship W4381490221A5005560434 @default.
- W4381490221 hasAuthorship W4381490221A5021492844 @default.
- W4381490221 hasAuthorship W4381490221A5028046389 @default.
- W4381490221 hasAuthorship W4381490221A5034559958 @default.
- W4381490221 hasAuthorship W4381490221A5034872702 @default.
- W4381490221 hasAuthorship W4381490221A5036795263 @default.
- W4381490221 hasAuthorship W4381490221A5041495189 @default.
- W4381490221 hasAuthorship W4381490221A5043480552 @default.
- W4381490221 hasAuthorship W4381490221A5055313777 @default.
- W4381490221 hasAuthorship W4381490221A5071475443 @default.
- W4381490221 hasAuthorship W4381490221A5075545622 @default.
- W4381490221 hasAuthorship W4381490221A5086115833 @default.
- W4381490221 hasAuthorship W4381490221A5089815214 @default.
- W4381490221 hasConcept C104709138 @default.
- W4381490221 hasConcept C11413529 @default.
- W4381490221 hasConcept C126838900 @default.
- W4381490221 hasConcept C141071460 @default.
- W4381490221 hasConcept C146849305 @default.
- W4381490221 hasConcept C154945302 @default.
- W4381490221 hasConcept C171606756 @default.
- W4381490221 hasConcept C2775946787 @default.
- W4381490221 hasConcept C2778871979 @default.
- W4381490221 hasConcept C2780955175 @default.
- W4381490221 hasConcept C29694066 @default.
- W4381490221 hasConcept C2989005 @default.
- W4381490221 hasConcept C36454342 @default.
- W4381490221 hasConcept C41008148 @default.
- W4381490221 hasConcept C54355233 @default.
- W4381490221 hasConcept C70410870 @default.
- W4381490221 hasConcept C71924100 @default.
- W4381490221 hasConcept C81363708 @default.
- W4381490221 hasConcept C86803240 @default.
- W4381490221 hasConceptScore W4381490221C104709138 @default.
- W4381490221 hasConceptScore W4381490221C11413529 @default.
- W4381490221 hasConceptScore W4381490221C126838900 @default.
- W4381490221 hasConceptScore W4381490221C141071460 @default.
- W4381490221 hasConceptScore W4381490221C146849305 @default.
- W4381490221 hasConceptScore W4381490221C154945302 @default.
- W4381490221 hasConceptScore W4381490221C171606756 @default.
- W4381490221 hasConceptScore W4381490221C2775946787 @default.
- W4381490221 hasConceptScore W4381490221C2778871979 @default.
- W4381490221 hasConceptScore W4381490221C2780955175 @default.
- W4381490221 hasConceptScore W4381490221C29694066 @default.
- W4381490221 hasConceptScore W4381490221C2989005 @default.
- W4381490221 hasConceptScore W4381490221C36454342 @default.
- W4381490221 hasConceptScore W4381490221C41008148 @default.