Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381492746> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4381492746 endingPage "2145" @default.
- W4381492746 startingPage "2145" @default.
- W4381492746 abstract "DDoS attacks remain a persistent cybersecurity threat, blocking services to legitimate users and causing significant damage to reputation, finances, and potential customers. For the detection of DDoS attacks, machine learning techniques such as supervised learning have been extensively employed, but their effectiveness declines when the framework confronts patterns exterior to the dataset. In addition, DDoS attack schemes continue to improve, rendering conventional data model-based training ineffectual. We have developed a novelty open-set recognition framework for DDoS attack detection to overcome the challenges of traditional methods. Our framework is built on a Convolutional Neural Network (CNN) construction featuring geometrical metric (CNN-Geo), which utilizes deep learning techniques to enhance accuracy. In addition, we have integrated an incremental learning module that can efficiently incorporate novel unknown traffic identified by telecommunication experts through the monitoring process. This unique approach provides an effective solution for identifying and alleviating DDoS. The module continuously improves the model’s performance by incorporating new knowledge and adapting to new attack patterns. The proposed model can detect unknown DDoS attacks with a detection rate of over 99% on conventional attacks from CICIDS2017. The model’s accuracy is further enhanced by 99.8% toward unknown attacks with the open datasets CICDDoS2019." @default.
- W4381492746 created "2023-06-22" @default.
- W4381492746 creator A5031895167 @default.
- W4381492746 creator A5047213689 @default.
- W4381492746 creator A5078488603 @default.
- W4381492746 date "2023-05-03" @default.
- W4381492746 modified "2023-10-17" @default.
- W4381492746 title "Detection of Unknown DDoS Attack Using Convolutional Neural Networks Featuring Geometrical Metric" @default.
- W4381492746 cites W2783398758 @default.
- W4381492746 cites W2904509905 @default.
- W4381492746 cites W2921019731 @default.
- W4381492746 cites W2946361217 @default.
- W4381492746 cites W2963149653 @default.
- W4381492746 cites W3000367805 @default.
- W4381492746 cites W3007238289 @default.
- W4381492746 cites W3010102451 @default.
- W4381492746 cites W3017346274 @default.
- W4381492746 cites W3020807179 @default.
- W4381492746 cites W3034338013 @default.
- W4381492746 cites W3043530913 @default.
- W4381492746 cites W3092771185 @default.
- W4381492746 cites W3093365819 @default.
- W4381492746 cites W3105570852 @default.
- W4381492746 cites W3115696055 @default.
- W4381492746 cites W3126814579 @default.
- W4381492746 cites W3157450643 @default.
- W4381492746 cites W3164999323 @default.
- W4381492746 cites W3172076356 @default.
- W4381492746 cites W3201346989 @default.
- W4381492746 cites W4205441739 @default.
- W4381492746 cites W4206219028 @default.
- W4381492746 cites W4210779665 @default.
- W4381492746 cites W4285112530 @default.
- W4381492746 cites W4285188200 @default.
- W4381492746 cites W4294169499 @default.
- W4381492746 cites W4294192982 @default.
- W4381492746 cites W4313327409 @default.
- W4381492746 cites W4313531834 @default.
- W4381492746 cites W4317207036 @default.
- W4381492746 cites W4323864106 @default.
- W4381492746 doi "https://doi.org/10.3390/math11092145" @default.
- W4381492746 hasPublicationYear "2023" @default.
- W4381492746 type Work @default.
- W4381492746 citedByCount "4" @default.
- W4381492746 countsByYear W43814927462023 @default.
- W4381492746 crossrefType "journal-article" @default.
- W4381492746 hasAuthorship W4381492746A5031895167 @default.
- W4381492746 hasAuthorship W4381492746A5047213689 @default.
- W4381492746 hasAuthorship W4381492746A5078488603 @default.
- W4381492746 hasBestOaLocation W43814927461 @default.
- W4381492746 hasConcept C108583219 @default.
- W4381492746 hasConcept C110875604 @default.
- W4381492746 hasConcept C119857082 @default.
- W4381492746 hasConcept C120865594 @default.
- W4381492746 hasConcept C127413603 @default.
- W4381492746 hasConcept C136764020 @default.
- W4381492746 hasConcept C154945302 @default.
- W4381492746 hasConcept C176217482 @default.
- W4381492746 hasConcept C205711294 @default.
- W4381492746 hasConcept C21547014 @default.
- W4381492746 hasConcept C38652104 @default.
- W4381492746 hasConcept C38822068 @default.
- W4381492746 hasConcept C41008148 @default.
- W4381492746 hasConcept C81363708 @default.
- W4381492746 hasConceptScore W4381492746C108583219 @default.
- W4381492746 hasConceptScore W4381492746C110875604 @default.
- W4381492746 hasConceptScore W4381492746C119857082 @default.
- W4381492746 hasConceptScore W4381492746C120865594 @default.
- W4381492746 hasConceptScore W4381492746C127413603 @default.
- W4381492746 hasConceptScore W4381492746C136764020 @default.
- W4381492746 hasConceptScore W4381492746C154945302 @default.
- W4381492746 hasConceptScore W4381492746C176217482 @default.
- W4381492746 hasConceptScore W4381492746C205711294 @default.
- W4381492746 hasConceptScore W4381492746C21547014 @default.
- W4381492746 hasConceptScore W4381492746C38652104 @default.
- W4381492746 hasConceptScore W4381492746C38822068 @default.
- W4381492746 hasConceptScore W4381492746C41008148 @default.
- W4381492746 hasConceptScore W4381492746C81363708 @default.
- W4381492746 hasIssue "9" @default.
- W4381492746 hasLocation W43814927461 @default.
- W4381492746 hasOpenAccess W4381492746 @default.
- W4381492746 hasPrimaryLocation W43814927461 @default.
- W4381492746 hasRelatedWork W2337926734 @default.
- W4381492746 hasRelatedWork W2360429410 @default.
- W4381492746 hasRelatedWork W2372606455 @default.
- W4381492746 hasRelatedWork W2376172429 @default.
- W4381492746 hasRelatedWork W4283017422 @default.
- W4381492746 hasRelatedWork W4311257506 @default.
- W4381492746 hasRelatedWork W4320802194 @default.
- W4381492746 hasRelatedWork W4366224123 @default.
- W4381492746 hasRelatedWork W4381487685 @default.
- W4381492746 hasRelatedWork W2189314507 @default.
- W4381492746 hasVolume "11" @default.
- W4381492746 isParatext "false" @default.
- W4381492746 isRetracted "false" @default.
- W4381492746 workType "article" @default.