Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381546956> ?p ?o ?g. }
- W4381546956 endingPage "102065" @default.
- W4381546956 startingPage "102065" @default.
- W4381546956 abstract "Although an independent metamodel may be used to accurately describe certain response relationships, it can be challenging to find suitable metamodels for various problems. The ensembled metamodel, in contrast, is a more universal method. The key to enhancing the performance of the ensembled metamodel is determining how to select the optimal set of metamodels to be ensembled (MBEs) and how to ensemble them to obtain a better fit. However, existing methods face challenges in exploring the fitting ability of individual metamodels within a pre-set sample set, often requiring prior knowledge or additional sample sets for assistance to get optimal MBEs, and they struggle to fully utilize the fitting ability of individual metamodels at each sample point. To address these challenges, this paper proposes a novel ensemble of metamodels using improved stepwise metamodel selection and two-layer pointwise ensemble (OSF-TLPE) through research in three aspects: model selection, weight calculation, and residual compensation. Firstly, the Leave-P-Out Prediction (LPOP) proposed in this paper reconstructs the response of the metamodel to the problem, which reduces the complexity of model selection. Then, considering the redundancy of the metamodel during ensemble, the Out-of-Bag Estimation (OOBE) based Stepwise Fit (OSF) eliminates redundancy as feature selection, which is a globally optimal method for metamodel selection. The two-layer pointwise ensemble of metamodels (TLPE), which consists of weight metamodels (WMs) and a residual metamodel (RM) provide a more robust ensemble strategy by assigning weights point by point and compensating for residuals. Finally, the performances of OSF and TLPE are evaluated on 12 benchmark functions using 6 and 13 typical metamodels, respectively. A performance comparison was also conducted on an aircraft final assembly line performance prediction problem. The results demonstrate that OSF-TLPE can deliver more flexible and reliable performances compared to common ensemble methods." @default.
- W4381546956 created "2023-06-22" @default.
- W4381546956 creator A5009177360 @default.
- W4381546956 creator A5038649665 @default.
- W4381546956 creator A5045011514 @default.
- W4381546956 creator A5046214153 @default.
- W4381546956 creator A5079369842 @default.
- W4381546956 date "2023-08-01" @default.
- W4381546956 modified "2023-09-27" @default.
- W4381546956 title "A novel ensemble of metamodels using improved stepwise metamodel selection and two-layer pointwise ensemble" @default.
- W4381546956 cites W2023354766 @default.
- W4381546956 cites W2028235352 @default.
- W4381546956 cites W2065473680 @default.
- W4381546956 cites W2076723282 @default.
- W4381546956 cites W2088990166 @default.
- W4381546956 cites W2091849019 @default.
- W4381546956 cites W2105782540 @default.
- W4381546956 cites W2127477556 @default.
- W4381546956 cites W2170936047 @default.
- W4381546956 cites W2218764114 @default.
- W4381546956 cites W2344351270 @default.
- W4381546956 cites W2468770775 @default.
- W4381546956 cites W2513579620 @default.
- W4381546956 cites W2517601269 @default.
- W4381546956 cites W2582165986 @default.
- W4381546956 cites W2584661392 @default.
- W4381546956 cites W2763806215 @default.
- W4381546956 cites W2785142512 @default.
- W4381546956 cites W2899640888 @default.
- W4381546956 cites W2980872209 @default.
- W4381546956 cites W2990877229 @default.
- W4381546956 cites W2997942134 @default.
- W4381546956 cites W3004654706 @default.
- W4381546956 cites W3036792628 @default.
- W4381546956 cites W3101936694 @default.
- W4381546956 cites W3118159497 @default.
- W4381546956 cites W3126508708 @default.
- W4381546956 cites W3129473935 @default.
- W4381546956 cites W3202222613 @default.
- W4381546956 cites W3210851548 @default.
- W4381546956 cites W4200462669 @default.
- W4381546956 cites W4283026902 @default.
- W4381546956 cites W4283074530 @default.
- W4381546956 cites W4292209637 @default.
- W4381546956 cites W650276496 @default.
- W4381546956 doi "https://doi.org/10.1016/j.aei.2023.102065" @default.
- W4381546956 hasPublicationYear "2023" @default.
- W4381546956 type Work @default.
- W4381546956 citedByCount "0" @default.
- W4381546956 crossrefType "journal-article" @default.
- W4381546956 hasAuthorship W4381546956A5009177360 @default.
- W4381546956 hasAuthorship W4381546956A5038649665 @default.
- W4381546956 hasAuthorship W4381546956A5045011514 @default.
- W4381546956 hasAuthorship W4381546956A5046214153 @default.
- W4381546956 hasAuthorship W4381546956A5079369842 @default.
- W4381546956 hasConcept C111919701 @default.
- W4381546956 hasConcept C11413529 @default.
- W4381546956 hasConcept C119857082 @default.
- W4381546956 hasConcept C119898033 @default.
- W4381546956 hasConcept C124101348 @default.
- W4381546956 hasConcept C134306372 @default.
- W4381546956 hasConcept C152124472 @default.
- W4381546956 hasConcept C154945302 @default.
- W4381546956 hasConcept C155512373 @default.
- W4381546956 hasConcept C199360897 @default.
- W4381546956 hasConcept C2777984123 @default.
- W4381546956 hasConcept C33923547 @default.
- W4381546956 hasConcept C41008148 @default.
- W4381546956 hasConcept C45942800 @default.
- W4381546956 hasConcept C81917197 @default.
- W4381546956 hasConcept C86610423 @default.
- W4381546956 hasConceptScore W4381546956C111919701 @default.
- W4381546956 hasConceptScore W4381546956C11413529 @default.
- W4381546956 hasConceptScore W4381546956C119857082 @default.
- W4381546956 hasConceptScore W4381546956C119898033 @default.
- W4381546956 hasConceptScore W4381546956C124101348 @default.
- W4381546956 hasConceptScore W4381546956C134306372 @default.
- W4381546956 hasConceptScore W4381546956C152124472 @default.
- W4381546956 hasConceptScore W4381546956C154945302 @default.
- W4381546956 hasConceptScore W4381546956C155512373 @default.
- W4381546956 hasConceptScore W4381546956C199360897 @default.
- W4381546956 hasConceptScore W4381546956C2777984123 @default.
- W4381546956 hasConceptScore W4381546956C33923547 @default.
- W4381546956 hasConceptScore W4381546956C41008148 @default.
- W4381546956 hasConceptScore W4381546956C45942800 @default.
- W4381546956 hasConceptScore W4381546956C81917197 @default.
- W4381546956 hasConceptScore W4381546956C86610423 @default.
- W4381546956 hasFunder F4320321540 @default.
- W4381546956 hasFunder F4320335777 @default.
- W4381546956 hasLocation W43815469561 @default.
- W4381546956 hasOpenAccess W4381546956 @default.
- W4381546956 hasPrimaryLocation W43815469561 @default.
- W4381546956 hasRelatedWork W1981909972 @default.
- W4381546956 hasRelatedWork W3124390867 @default.
- W4381546956 hasRelatedWork W3136979370 @default.
- W4381546956 hasRelatedWork W4281560664 @default.
- W4381546956 hasRelatedWork W4281757034 @default.
- W4381546956 hasRelatedWork W4285046548 @default.