Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381550769> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4381550769 abstract "Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties. Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a hot research topic and frontier in this field. However, due to the small number and uneven distribution of drilled wells in new exploration areas and the lack of sample data related to risk, the training model has insufficient generalization ability, and thus the prediction is not effective. In this paper, a drilling risk profile (depth domain) rich in geological and engineering information is constructed by introducing a quantitative evaluation method for drilling risk of drilled wells, which can provide sufficient risk sample data for model training and thus solve the small sample problem. For the problem of uneven distribution of drilling wells in new exploration areas, the concept of virtual wells and their deployment methods were proposed. Besides, two methods for calculating rock mechanical parameters of virtual wells were proposed, and the accuracy and applicability of the two methods are analyzed. The LSTM deep learning model was optimized to tap the quantitative relationship between drilling risk profiles and multi-source data (e.g., seismic, logging, and rock mechanical parameters). The model was validated to have an average relative error of 9.19%. The quantitative prediction of the drilling risk profile of the virtual well was achieved using the trained LSTM model and the calculation of the relevant parameters of the virtual well. Finally, based on the sequential Gaussian simulation method and the risk distribution of drilled and virtual wells, a regional 3D drilling risk model was constructed. The analysis of real cases shows that the addition of virtual wells can significantly improve the identification of regional drilling risks and the prediction accuracy of pre-drill drilling risks in unexplored areas can be improved by up to 21% compared with the 3D risk model constructed based on drilled wells only." @default.
- W4381550769 created "2023-06-22" @default.
- W4381550769 creator A5001058337 @default.
- W4381550769 creator A5003184049 @default.
- W4381550769 creator A5017098509 @default.
- W4381550769 creator A5025541008 @default.
- W4381550769 creator A5031379535 @default.
- W4381550769 creator A5051121953 @default.
- W4381550769 creator A5052974302 @default.
- W4381550769 creator A5063333932 @default.
- W4381550769 creator A5092229264 @default.
- W4381550769 date "2023-06-01" @default.
- W4381550769 modified "2023-10-17" @default.
- W4381550769 title "Risk pre-assessment method for regional drilling engineering based on deep learning and multi-source data" @default.
- W4381550769 cites W2034503747 @default.
- W4381550769 cites W2342266843 @default.
- W4381550769 cites W2565194925 @default.
- W4381550769 cites W2742185097 @default.
- W4381550769 cites W2793699999 @default.
- W4381550769 cites W2883318912 @default.
- W4381550769 cites W2906690230 @default.
- W4381550769 cites W2952758972 @default.
- W4381550769 cites W2963487256 @default.
- W4381550769 cites W2990769412 @default.
- W4381550769 cites W3001016814 @default.
- W4381550769 cites W3011434803 @default.
- W4381550769 cites W3033526161 @default.
- W4381550769 cites W3033624017 @default.
- W4381550769 cites W3101909932 @default.
- W4381550769 cites W3139178592 @default.
- W4381550769 cites W3174307426 @default.
- W4381550769 cites W4221006238 @default.
- W4381550769 cites W4223974317 @default.
- W4381550769 cites W4224073290 @default.
- W4381550769 doi "https://doi.org/10.1016/j.petsci.2023.06.005" @default.
- W4381550769 hasPublicationYear "2023" @default.
- W4381550769 type Work @default.
- W4381550769 citedByCount "1" @default.
- W4381550769 crossrefType "journal-article" @default.
- W4381550769 hasAuthorship W4381550769A5001058337 @default.
- W4381550769 hasAuthorship W4381550769A5003184049 @default.
- W4381550769 hasAuthorship W4381550769A5017098509 @default.
- W4381550769 hasAuthorship W4381550769A5025541008 @default.
- W4381550769 hasAuthorship W4381550769A5031379535 @default.
- W4381550769 hasAuthorship W4381550769A5051121953 @default.
- W4381550769 hasAuthorship W4381550769A5052974302 @default.
- W4381550769 hasAuthorship W4381550769A5063333932 @default.
- W4381550769 hasAuthorship W4381550769A5092229264 @default.
- W4381550769 hasBestOaLocation W43815507691 @default.
- W4381550769 hasConcept C124101348 @default.
- W4381550769 hasConcept C127413603 @default.
- W4381550769 hasConcept C134306372 @default.
- W4381550769 hasConcept C154945302 @default.
- W4381550769 hasConcept C177148314 @default.
- W4381550769 hasConcept C185592680 @default.
- W4381550769 hasConcept C198531522 @default.
- W4381550769 hasConcept C25197100 @default.
- W4381550769 hasConcept C33923547 @default.
- W4381550769 hasConcept C41008148 @default.
- W4381550769 hasConcept C43617362 @default.
- W4381550769 hasConcept C78519656 @default.
- W4381550769 hasConcept C78762247 @default.
- W4381550769 hasConceptScore W4381550769C124101348 @default.
- W4381550769 hasConceptScore W4381550769C127413603 @default.
- W4381550769 hasConceptScore W4381550769C134306372 @default.
- W4381550769 hasConceptScore W4381550769C154945302 @default.
- W4381550769 hasConceptScore W4381550769C177148314 @default.
- W4381550769 hasConceptScore W4381550769C185592680 @default.
- W4381550769 hasConceptScore W4381550769C198531522 @default.
- W4381550769 hasConceptScore W4381550769C25197100 @default.
- W4381550769 hasConceptScore W4381550769C33923547 @default.
- W4381550769 hasConceptScore W4381550769C41008148 @default.
- W4381550769 hasConceptScore W4381550769C43617362 @default.
- W4381550769 hasConceptScore W4381550769C78519656 @default.
- W4381550769 hasConceptScore W4381550769C78762247 @default.
- W4381550769 hasLocation W43815507691 @default.
- W4381550769 hasOpenAccess W4381550769 @default.
- W4381550769 hasPrimaryLocation W43815507691 @default.
- W4381550769 hasRelatedWork W2347408118 @default.
- W4381550769 hasRelatedWork W2350160718 @default.
- W4381550769 hasRelatedWork W2353055381 @default.
- W4381550769 hasRelatedWork W2359266949 @default.
- W4381550769 hasRelatedWork W2380927407 @default.
- W4381550769 hasRelatedWork W2382764255 @default.
- W4381550769 hasRelatedWork W2393925373 @default.
- W4381550769 hasRelatedWork W2899084033 @default.
- W4381550769 hasRelatedWork W4213185095 @default.
- W4381550769 hasRelatedWork W4285245959 @default.
- W4381550769 isParatext "false" @default.
- W4381550769 isRetracted "false" @default.
- W4381550769 workType "article" @default.