Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381551736> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4381551736 abstract "Let $X:M^nto mathbb{R}^{n+1}$ be a complete properly immersed self-shrinker. In this paper, we prove that if the squared norm of the second fundamental form $S$ satisfies $1leq S< C$ for some constant $C$, then $S=1$. Further we classify the $n$-dimensional complete proper self-shrinkers with constant squared norm of the second fundamental form in $mathbb{R}^{n+1}$, which solve the conjecture proposed by Q.M. Cheng and G. Wei when the self-shrinker is proper." @default.
- W4381551736 created "2023-06-22" @default.
- W4381551736 creator A5024754267 @default.
- W4381551736 creator A5029591205 @default.
- W4381551736 date "2023-06-17" @default.
- W4381551736 modified "2023-10-16" @default.
- W4381551736 title "Complete self-shrinkers with bounded the second fundamental form in $mathbb{R}^{n+1}$" @default.
- W4381551736 doi "https://doi.org/10.48550/arxiv.2306.10343" @default.
- W4381551736 hasPublicationYear "2023" @default.
- W4381551736 type Work @default.
- W4381551736 citedByCount "0" @default.
- W4381551736 crossrefType "posted-content" @default.
- W4381551736 hasAuthorship W4381551736A5024754267 @default.
- W4381551736 hasAuthorship W4381551736A5029591205 @default.
- W4381551736 hasBestOaLocation W43815517361 @default.
- W4381551736 hasConcept C114614502 @default.
- W4381551736 hasConcept C118615104 @default.
- W4381551736 hasConcept C119830904 @default.
- W4381551736 hasConcept C134306372 @default.
- W4381551736 hasConcept C135692309 @default.
- W4381551736 hasConcept C175017881 @default.
- W4381551736 hasConcept C17744445 @default.
- W4381551736 hasConcept C191795146 @default.
- W4381551736 hasConcept C195065555 @default.
- W4381551736 hasConcept C199360897 @default.
- W4381551736 hasConcept C199539241 @default.
- W4381551736 hasConcept C2524010 @default.
- W4381551736 hasConcept C2777027219 @default.
- W4381551736 hasConcept C2780990831 @default.
- W4381551736 hasConcept C33923547 @default.
- W4381551736 hasConcept C34388435 @default.
- W4381551736 hasConcept C41008148 @default.
- W4381551736 hasConceptScore W4381551736C114614502 @default.
- W4381551736 hasConceptScore W4381551736C118615104 @default.
- W4381551736 hasConceptScore W4381551736C119830904 @default.
- W4381551736 hasConceptScore W4381551736C134306372 @default.
- W4381551736 hasConceptScore W4381551736C135692309 @default.
- W4381551736 hasConceptScore W4381551736C175017881 @default.
- W4381551736 hasConceptScore W4381551736C17744445 @default.
- W4381551736 hasConceptScore W4381551736C191795146 @default.
- W4381551736 hasConceptScore W4381551736C195065555 @default.
- W4381551736 hasConceptScore W4381551736C199360897 @default.
- W4381551736 hasConceptScore W4381551736C199539241 @default.
- W4381551736 hasConceptScore W4381551736C2524010 @default.
- W4381551736 hasConceptScore W4381551736C2777027219 @default.
- W4381551736 hasConceptScore W4381551736C2780990831 @default.
- W4381551736 hasConceptScore W4381551736C33923547 @default.
- W4381551736 hasConceptScore W4381551736C34388435 @default.
- W4381551736 hasConceptScore W4381551736C41008148 @default.
- W4381551736 hasLocation W43815517361 @default.
- W4381551736 hasLocation W43815517362 @default.
- W4381551736 hasOpenAccess W4381551736 @default.
- W4381551736 hasPrimaryLocation W43815517361 @default.
- W4381551736 hasRelatedWork W2009482999 @default.
- W4381551736 hasRelatedWork W2029981401 @default.
- W4381551736 hasRelatedWork W2141025769 @default.
- W4381551736 hasRelatedWork W2460420532 @default.
- W4381551736 hasRelatedWork W2740334431 @default.
- W4381551736 hasRelatedWork W2916559432 @default.
- W4381551736 hasRelatedWork W3037217749 @default.
- W4381551736 hasRelatedWork W3084636652 @default.
- W4381551736 hasRelatedWork W3217230002 @default.
- W4381551736 hasRelatedWork W4311429764 @default.
- W4381551736 isParatext "false" @default.
- W4381551736 isRetracted "false" @default.
- W4381551736 workType "article" @default.