Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381569354> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4381569354 abstract "Abstract In this paper, a passive hazard detection and avoidance (HDA) system is presented, relying only on images as observations. To process these images, convolutional neural networks (CNNs) are used to perform semantic segmentation and identify hazards corresponding to three different layers, namely feature detection, shadow detection, and slope estimation. The absence of active sensors such as light detection and ranging (LiDAR) makes it challenging to assess the surface geometry of a celestial body, and the training of the neural networks in this work is oriented towards coping with that drawback. The image data set for the training is generated using blender, and different body shape models (also referred to as meshes) are included, onto which stochastic feature populations and illumination conditions are imposed to produce a more diverse database. The CNNs are trained following a transfer learning approach to reduce the training effort and take advantage of previously trained networks. The results accurately predict the hazards in the images belonging to the data set, but struggle to yield successful predictions for the slope estimation, when images external to the data set are used, indicating that including the geometry of the target body in the training phase makes an impact on the quality of these predictions. The obtained predictions are composed to create safety maps, which are meant to be given as input to the guidance block of the spacecraft to evaluate the need for a manoeuvre to avoid hazardous areas. Additionally, preliminary hardware-in-the-loop (HIL) test results are included, in which the algorithms developed are confronted against images taken using real hardware." @default.
- W4381569354 created "2023-06-22" @default.
- W4381569354 creator A5010207057 @default.
- W4381569354 creator A5021417897 @default.
- W4381569354 creator A5048772799 @default.
- W4381569354 creator A5061916880 @default.
- W4381569354 date "2023-05-30" @default.
- W4381569354 modified "2023-09-27" @default.
- W4381569354 title "A LiDAR-less approach to autonomous hazard detection and avoidance systems based on semantic segmentation" @default.
- W4381569354 cites W1490478136 @default.
- W4381569354 cites W1619079997 @default.
- W4381569354 cites W1677182931 @default.
- W4381569354 cites W1849277567 @default.
- W4381569354 cites W1981351218 @default.
- W4381569354 cites W2014708096 @default.
- W4381569354 cites W2041973693 @default.
- W4381569354 cites W2085664297 @default.
- W4381569354 cites W2085787306 @default.
- W4381569354 cites W2108598243 @default.
- W4381569354 cites W2147698953 @default.
- W4381569354 cites W2337643215 @default.
- W4381569354 cites W2510597476 @default.
- W4381569354 cites W2591694678 @default.
- W4381569354 cites W2620377349 @default.
- W4381569354 cites W2625375585 @default.
- W4381569354 cites W2792008101 @default.
- W4381569354 cites W2981974911 @default.
- W4381569354 cites W2997189294 @default.
- W4381569354 cites W3033485479 @default.
- W4381569354 cites W3034627419 @default.
- W4381569354 cites W3048218390 @default.
- W4381569354 cites W3080328268 @default.
- W4381569354 cites W3095343947 @default.
- W4381569354 cites W3126236051 @default.
- W4381569354 cites W4200171313 @default.
- W4381569354 cites W4205615281 @default.
- W4381569354 cites W4206196193 @default.
- W4381569354 cites W4221084397 @default.
- W4381569354 cites W4296363155 @default.
- W4381569354 cites W4380878526 @default.
- W4381569354 doi "https://doi.org/10.1007/s10569-023-10140-9" @default.
- W4381569354 hasPublicationYear "2023" @default.
- W4381569354 type Work @default.
- W4381569354 citedByCount "0" @default.
- W4381569354 crossrefType "journal-article" @default.
- W4381569354 hasAuthorship W4381569354A5010207057 @default.
- W4381569354 hasAuthorship W4381569354A5021417897 @default.
- W4381569354 hasAuthorship W4381569354A5048772799 @default.
- W4381569354 hasAuthorship W4381569354A5061916880 @default.
- W4381569354 hasBestOaLocation W43815693541 @default.
- W4381569354 hasConcept C115051666 @default.
- W4381569354 hasConcept C138885662 @default.
- W4381569354 hasConcept C153180895 @default.
- W4381569354 hasConcept C154945302 @default.
- W4381569354 hasConcept C205649164 @default.
- W4381569354 hasConcept C2776401178 @default.
- W4381569354 hasConcept C31972630 @default.
- W4381569354 hasConcept C41008148 @default.
- W4381569354 hasConcept C41895202 @default.
- W4381569354 hasConcept C50644808 @default.
- W4381569354 hasConcept C51399673 @default.
- W4381569354 hasConcept C62649853 @default.
- W4381569354 hasConcept C76155785 @default.
- W4381569354 hasConcept C81363708 @default.
- W4381569354 hasConcept C89600930 @default.
- W4381569354 hasConceptScore W4381569354C115051666 @default.
- W4381569354 hasConceptScore W4381569354C138885662 @default.
- W4381569354 hasConceptScore W4381569354C153180895 @default.
- W4381569354 hasConceptScore W4381569354C154945302 @default.
- W4381569354 hasConceptScore W4381569354C205649164 @default.
- W4381569354 hasConceptScore W4381569354C2776401178 @default.
- W4381569354 hasConceptScore W4381569354C31972630 @default.
- W4381569354 hasConceptScore W4381569354C41008148 @default.
- W4381569354 hasConceptScore W4381569354C41895202 @default.
- W4381569354 hasConceptScore W4381569354C50644808 @default.
- W4381569354 hasConceptScore W4381569354C51399673 @default.
- W4381569354 hasConceptScore W4381569354C62649853 @default.
- W4381569354 hasConceptScore W4381569354C76155785 @default.
- W4381569354 hasConceptScore W4381569354C81363708 @default.
- W4381569354 hasConceptScore W4381569354C89600930 @default.
- W4381569354 hasFunder F4320338337 @default.
- W4381569354 hasIssue "3" @default.
- W4381569354 hasLocation W43815693541 @default.
- W4381569354 hasOpenAccess W4381569354 @default.
- W4381569354 hasPrimaryLocation W43815693541 @default.
- W4381569354 hasRelatedWork W1669643531 @default.
- W4381569354 hasRelatedWork W1982826852 @default.
- W4381569354 hasRelatedWork W2005437358 @default.
- W4381569354 hasRelatedWork W2008656436 @default.
- W4381569354 hasRelatedWork W2023558673 @default.
- W4381569354 hasRelatedWork W2056878947 @default.
- W4381569354 hasRelatedWork W2110230079 @default.
- W4381569354 hasRelatedWork W2134924024 @default.
- W4381569354 hasRelatedWork W2353592657 @default.
- W4381569354 hasRelatedWork W2517104666 @default.
- W4381569354 hasVolume "135" @default.
- W4381569354 isParatext "false" @default.
- W4381569354 isRetracted "false" @default.
- W4381569354 workType "article" @default.