Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381569470> ?p ?o ?g. }
- W4381569470 endingPage "6610" @default.
- W4381569470 startingPage "6610" @default.
- W4381569470 abstract "Contemporary security information and event management (SIEM) solutions struggle to identify critical security incidents effectively due to the overwhelming number of false alerts generated by disparate security products, which results in significant alert fatigue and hinders effective incident response. To overcome this challenge, we propose a next-generation SIEM framework that integrates security orchestration automation and response capabilities and utilizes a divide-and-conquer strategy to mitigate the impact of low-quality IDS alerts. The proposed framework leverages advanced machine learning and data visualization tools—including a cost-sensitive learning method and an event segmenting algorithm—to filter and correlate alerts plus an augmented visualization tool to expedite the triage process. The proposed framework was evaluated experimentally on a dataset collected from a real-world enterprise network, and we report highly convincing results. The alert screening scheme demonstrates significant potential for real-world security operations. We believe that our findings will contributing to the development of a next-generation SIEM system that effectively addresses alert fatigue and lays the foundation for future research in this field." @default.
- W4381569470 created "2023-06-22" @default.
- W4381569470 creator A5014860606 @default.
- W4381569470 creator A5016453346 @default.
- W4381569470 creator A5029032117 @default.
- W4381569470 creator A5071687365 @default.
- W4381569470 date "2023-05-29" @default.
- W4381569470 modified "2023-10-06" @default.
- W4381569470 title "Breaking Alert Fatigue: AI-Assisted SIEM Framework for Effective Incident Response" @default.
- W4381569470 cites W1516506771 @default.
- W4381569470 cites W1680797894 @default.
- W4381569470 cites W1970470098 @default.
- W4381569470 cites W2012169431 @default.
- W4381569470 cites W2017434035 @default.
- W4381569470 cites W2042506099 @default.
- W4381569470 cites W2057358937 @default.
- W4381569470 cites W2084602587 @default.
- W4381569470 cites W2118978333 @default.
- W4381569470 cites W2152449272 @default.
- W4381569470 cites W2153635508 @default.
- W4381569470 cites W2168508521 @default.
- W4381569470 cites W2169408065 @default.
- W4381569470 cites W2171035369 @default.
- W4381569470 cites W2172122080 @default.
- W4381569470 cites W2341844252 @default.
- W4381569470 cites W2584335703 @default.
- W4381569470 cites W2617620258 @default.
- W4381569470 cites W2756737320 @default.
- W4381569470 cites W2807786182 @default.
- W4381569470 cites W2947745012 @default.
- W4381569470 cites W2949647805 @default.
- W4381569470 cites W3007705818 @default.
- W4381569470 cites W3034563243 @default.
- W4381569470 cites W3080310391 @default.
- W4381569470 cites W3088420918 @default.
- W4381569470 cites W3108481873 @default.
- W4381569470 cites W3129768586 @default.
- W4381569470 cites W3144067442 @default.
- W4381569470 cites W3165574415 @default.
- W4381569470 cites W3179245071 @default.
- W4381569470 cites W3198775197 @default.
- W4381569470 cites W4205462435 @default.
- W4381569470 cites W4224055112 @default.
- W4381569470 cites W4229454663 @default.
- W4381569470 cites W4291743636 @default.
- W4381569470 cites W4312426214 @default.
- W4381569470 cites W4312847977 @default.
- W4381569470 cites W4313477864 @default.
- W4381569470 cites W4319080536 @default.
- W4381569470 cites W4319997993 @default.
- W4381569470 cites W4320008781 @default.
- W4381569470 cites W4320919659 @default.
- W4381569470 cites W4321250656 @default.
- W4381569470 cites W4353090637 @default.
- W4381569470 cites W2081807077 @default.
- W4381569470 doi "https://doi.org/10.3390/app13116610" @default.
- W4381569470 hasPublicationYear "2023" @default.
- W4381569470 type Work @default.
- W4381569470 citedByCount "1" @default.
- W4381569470 countsByYear W43815694702023 @default.
- W4381569470 crossrefType "journal-article" @default.
- W4381569470 hasAuthorship W4381569470A5014860606 @default.
- W4381569470 hasAuthorship W4381569470A5016453346 @default.
- W4381569470 hasAuthorship W4381569470A5029032117 @default.
- W4381569470 hasAuthorship W4381569470A5071687365 @default.
- W4381569470 hasBestOaLocation W43815694701 @default.
- W4381569470 hasConcept C111919701 @default.
- W4381569470 hasConcept C121332964 @default.
- W4381569470 hasConcept C154945302 @default.
- W4381569470 hasConcept C165609540 @default.
- W4381569470 hasConcept C194828623 @default.
- W4381569470 hasConcept C202444582 @default.
- W4381569470 hasConcept C2522767166 @default.
- W4381569470 hasConcept C2777120189 @default.
- W4381569470 hasConcept C2779662365 @default.
- W4381569470 hasConcept C2985105721 @default.
- W4381569470 hasConcept C33923547 @default.
- W4381569470 hasConcept C36464697 @default.
- W4381569470 hasConcept C38652104 @default.
- W4381569470 hasConcept C41008148 @default.
- W4381569470 hasConcept C62520636 @default.
- W4381569470 hasConcept C71924100 @default.
- W4381569470 hasConcept C95713431 @default.
- W4381569470 hasConcept C9652623 @default.
- W4381569470 hasConcept C98045186 @default.
- W4381569470 hasConceptScore W4381569470C111919701 @default.
- W4381569470 hasConceptScore W4381569470C121332964 @default.
- W4381569470 hasConceptScore W4381569470C154945302 @default.
- W4381569470 hasConceptScore W4381569470C165609540 @default.
- W4381569470 hasConceptScore W4381569470C194828623 @default.
- W4381569470 hasConceptScore W4381569470C202444582 @default.
- W4381569470 hasConceptScore W4381569470C2522767166 @default.
- W4381569470 hasConceptScore W4381569470C2777120189 @default.
- W4381569470 hasConceptScore W4381569470C2779662365 @default.
- W4381569470 hasConceptScore W4381569470C2985105721 @default.
- W4381569470 hasConceptScore W4381569470C33923547 @default.
- W4381569470 hasConceptScore W4381569470C36464697 @default.
- W4381569470 hasConceptScore W4381569470C38652104 @default.