Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381569929> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4381569929 endingPage "10" @default.
- W4381569929 startingPage "1" @default.
- W4381569929 abstract "The leading cause of death worldwide today is heart disease (HD). The heart is recognised as the second-most significant organ behind the brain. A successful outcome of treatment can be improved by an early diagnosis which can significantly reduce the chance of death in health care. In this paper, we proposed a method to predict heart disease. We used various machine learning algorithms (MLA), namely, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), Naive Bayes (NB), random forest (RF), and decision tree (DT). With the testing data set, we evaluated the model’s accuracy in heart disease prediction. When compared to the other five models, the random forest and k-nearest neighbor approaches perform better. With a 99.04% accuracy rate, the k-nearest neighbor algorithm and random forest provide the best match to the data as compared to other algorithms. Six feature selection algorithms were used for the performance evaluation matrix. MCC parameters for accuracy, precision, recall, and F measure are used to evaluate models." @default.
- W4381569929 created "2023-06-22" @default.
- W4381569929 creator A5000482594 @default.
- W4381569929 creator A5009680074 @default.
- W4381569929 creator A5020692715 @default.
- W4381569929 creator A5035299588 @default.
- W4381569929 creator A5064245169 @default.
- W4381569929 creator A5068901045 @default.
- W4381569929 date "2023-05-29" @default.
- W4381569929 modified "2023-10-10" @default.
- W4381569929 title "Performance Evaluation of Machine Learning Techniques (MLT) for Heart Disease Prediction" @default.
- W4381569929 cites W1970805379 @default.
- W4381569929 cites W2024305570 @default.
- W4381569929 cites W2891207990 @default.
- W4381569929 cites W2949767632 @default.
- W4381569929 cites W3021399285 @default.
- W4381569929 cites W3131400583 @default.
- W4381569929 cites W4210630286 @default.
- W4381569929 cites W4220772655 @default.
- W4381569929 cites W4220790242 @default.
- W4381569929 cites W4220987968 @default.
- W4381569929 cites W4224243355 @default.
- W4381569929 cites W4281262746 @default.
- W4381569929 cites W4285260680 @default.
- W4381569929 cites W4296990845 @default.
- W4381569929 cites W4301180893 @default.
- W4381569929 cites W4307053972 @default.
- W4381569929 cites W4308308208 @default.
- W4381569929 cites W4324291205 @default.
- W4381569929 doi "https://doi.org/10.1155/2023/8191261" @default.
- W4381569929 hasPublicationYear "2023" @default.
- W4381569929 type Work @default.
- W4381569929 citedByCount "1" @default.
- W4381569929 countsByYear W43815699292023 @default.
- W4381569929 crossrefType "journal-article" @default.
- W4381569929 hasAuthorship W4381569929A5000482594 @default.
- W4381569929 hasAuthorship W4381569929A5009680074 @default.
- W4381569929 hasAuthorship W4381569929A5020692715 @default.
- W4381569929 hasAuthorship W4381569929A5035299588 @default.
- W4381569929 hasAuthorship W4381569929A5064245169 @default.
- W4381569929 hasAuthorship W4381569929A5068901045 @default.
- W4381569929 hasBestOaLocation W43815699291 @default.
- W4381569929 hasConcept C113238511 @default.
- W4381569929 hasConcept C119857082 @default.
- W4381569929 hasConcept C12267149 @default.
- W4381569929 hasConcept C124101348 @default.
- W4381569929 hasConcept C138885662 @default.
- W4381569929 hasConcept C148483581 @default.
- W4381569929 hasConcept C151956035 @default.
- W4381569929 hasConcept C153180895 @default.
- W4381569929 hasConcept C154945302 @default.
- W4381569929 hasConcept C169258074 @default.
- W4381569929 hasConcept C27181475 @default.
- W4381569929 hasConcept C2776401178 @default.
- W4381569929 hasConcept C41008148 @default.
- W4381569929 hasConcept C41895202 @default.
- W4381569929 hasConcept C52001869 @default.
- W4381569929 hasConcept C58489278 @default.
- W4381569929 hasConcept C81669768 @default.
- W4381569929 hasConcept C84525736 @default.
- W4381569929 hasConceptScore W4381569929C113238511 @default.
- W4381569929 hasConceptScore W4381569929C119857082 @default.
- W4381569929 hasConceptScore W4381569929C12267149 @default.
- W4381569929 hasConceptScore W4381569929C124101348 @default.
- W4381569929 hasConceptScore W4381569929C138885662 @default.
- W4381569929 hasConceptScore W4381569929C148483581 @default.
- W4381569929 hasConceptScore W4381569929C151956035 @default.
- W4381569929 hasConceptScore W4381569929C153180895 @default.
- W4381569929 hasConceptScore W4381569929C154945302 @default.
- W4381569929 hasConceptScore W4381569929C169258074 @default.
- W4381569929 hasConceptScore W4381569929C27181475 @default.
- W4381569929 hasConceptScore W4381569929C2776401178 @default.
- W4381569929 hasConceptScore W4381569929C41008148 @default.
- W4381569929 hasConceptScore W4381569929C41895202 @default.
- W4381569929 hasConceptScore W4381569929C52001869 @default.
- W4381569929 hasConceptScore W4381569929C58489278 @default.
- W4381569929 hasConceptScore W4381569929C81669768 @default.
- W4381569929 hasConceptScore W4381569929C84525736 @default.
- W4381569929 hasFunder F4320311227 @default.
- W4381569929 hasLocation W43815699291 @default.
- W4381569929 hasOpenAccess W4381569929 @default.
- W4381569929 hasPrimaryLocation W43815699291 @default.
- W4381569929 hasRelatedWork W2394323384 @default.
- W4381569929 hasRelatedWork W2771255398 @default.
- W4381569929 hasRelatedWork W2930428186 @default.
- W4381569929 hasRelatedWork W2966195860 @default.
- W4381569929 hasRelatedWork W3120363735 @default.
- W4381569929 hasRelatedWork W3125536479 @default.
- W4381569929 hasRelatedWork W3200027047 @default.
- W4381569929 hasRelatedWork W4214820172 @default.
- W4381569929 hasRelatedWork W4385770464 @default.
- W4381569929 hasRelatedWork W4386984454 @default.
- W4381569929 hasVolume "2023" @default.
- W4381569929 isParatext "false" @default.
- W4381569929 isRetracted "false" @default.
- W4381569929 workType "article" @default.