Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381570403> ?p ?o ?g. }
- W4381570403 endingPage "196" @default.
- W4381570403 startingPage "174" @default.
- W4381570403 abstract "Abstract In this study, a novel method is proposed to optimize the reinforced parameters influencing the bearing capacity of a shallow square foundation resting on sandy soil reinforced with geosynthetic. The parameters to be optimized are reinforcement length (L), the number of reinforcement layers ( N ), the depth of the topmost layer of geosynthetic (U), and the vertical distance between two reinforcement layers (X). To achieve this objective, 25 laboratory small-scale model tests were conducted on reinforced sand. This laboratory-scale model has used two geosynthetics as reinforcement materials and one sandy soil. Firstly, the effect of reinforcement parameters on the bearing load was investigated using the analysis of variance (ANOVA). Both response surface methodology (RSM) and artificial neural networks (ANN) tools were applied and compared to model bearing capacity. Finally, the multiobjective genetic algorithm (MOGA) coupled with RSM and ANN models was used to solve multi objective optimization problems. The design of bearing capacity is considered a multi-objective optimization problem. In this regard, the two conflicting objectives are the need to maximize bearing capacity and minimize the cost. According to the obtained results, an informed decision regarding the design of the bearing capacity of reinforced sand is reached." @default.
- W4381570403 created "2023-06-22" @default.
- W4381570403 creator A5033649894 @default.
- W4381570403 creator A5078825379 @default.
- W4381570403 creator A5092230012 @default.
- W4381570403 date "2023-05-31" @default.
- W4381570403 modified "2023-09-26" @default.
- W4381570403 title "A Novel Method for Optimizing Parameters influencing the Bearing Capacity of Geosynthetic Reinforced Sand Using RSM, ANN, and Multi-objective Genetic Algorithm" @default.
- W4381570403 cites W1542283340 @default.
- W4381570403 cites W1557830736 @default.
- W4381570403 cites W1577991180 @default.
- W4381570403 cites W1916166419 @default.
- W4381570403 cites W1964351308 @default.
- W4381570403 cites W1966497760 @default.
- W4381570403 cites W1978820282 @default.
- W4381570403 cites W1980193883 @default.
- W4381570403 cites W1994771072 @default.
- W4381570403 cites W1995962498 @default.
- W4381570403 cites W1999841234 @default.
- W4381570403 cites W2007007819 @default.
- W4381570403 cites W2009474342 @default.
- W4381570403 cites W2014925969 @default.
- W4381570403 cites W2018424917 @default.
- W4381570403 cites W2023485109 @default.
- W4381570403 cites W2024399326 @default.
- W4381570403 cites W2027540046 @default.
- W4381570403 cites W2037878232 @default.
- W4381570403 cites W2046253635 @default.
- W4381570403 cites W2048165934 @default.
- W4381570403 cites W2061269631 @default.
- W4381570403 cites W2066279054 @default.
- W4381570403 cites W2067129029 @default.
- W4381570403 cites W2067997220 @default.
- W4381570403 cites W2071782538 @default.
- W4381570403 cites W2072318027 @default.
- W4381570403 cites W2082979048 @default.
- W4381570403 cites W2091828262 @default.
- W4381570403 cites W2095104444 @default.
- W4381570403 cites W2097220296 @default.
- W4381570403 cites W2100925393 @default.
- W4381570403 cites W2107845890 @default.
- W4381570403 cites W2139709018 @default.
- W4381570403 cites W2144046873 @default.
- W4381570403 cites W2189759260 @default.
- W4381570403 cites W2276736591 @default.
- W4381570403 cites W2472935730 @default.
- W4381570403 cites W2735385603 @default.
- W4381570403 cites W2766150160 @default.
- W4381570403 cites W2767988664 @default.
- W4381570403 cites W2790921492 @default.
- W4381570403 cites W2793916993 @default.
- W4381570403 cites W2802943441 @default.
- W4381570403 cites W2803880528 @default.
- W4381570403 cites W2807968634 @default.
- W4381570403 cites W2887585058 @default.
- W4381570403 cites W2903629770 @default.
- W4381570403 cites W2904525976 @default.
- W4381570403 cites W2908506597 @default.
- W4381570403 cites W2927990003 @default.
- W4381570403 cites W2945385723 @default.
- W4381570403 cites W2947673476 @default.
- W4381570403 cites W2966250584 @default.
- W4381570403 cites W2991151378 @default.
- W4381570403 cites W3026856545 @default.
- W4381570403 cites W3081086811 @default.
- W4381570403 cites W3083131701 @default.
- W4381570403 cites W3134382669 @default.
- W4381570403 cites W3147706128 @default.
- W4381570403 cites W3156166171 @default.
- W4381570403 cites W3159941795 @default.
- W4381570403 cites W31615342 @default.
- W4381570403 cites W3196304528 @default.
- W4381570403 cites W3208908984 @default.
- W4381570403 cites W4210657075 @default.
- W4381570403 cites W4220831795 @default.
- W4381570403 cites W4245325127 @default.
- W4381570403 cites W4280527470 @default.
- W4381570403 cites W4280600648 @default.
- W4381570403 cites W4281641828 @default.
- W4381570403 doi "https://doi.org/10.2478/sgem-2023-0006" @default.
- W4381570403 hasPublicationYear "2023" @default.
- W4381570403 type Work @default.
- W4381570403 citedByCount "0" @default.
- W4381570403 crossrefType "journal-article" @default.
- W4381570403 hasAuthorship W4381570403A5033649894 @default.
- W4381570403 hasAuthorship W4381570403A5078825379 @default.
- W4381570403 hasAuthorship W4381570403A5092230012 @default.
- W4381570403 hasBestOaLocation W43815704031 @default.
- W4381570403 hasConcept C119857082 @default.
- W4381570403 hasConcept C127413603 @default.
- W4381570403 hasConcept C135677250 @default.
- W4381570403 hasConcept C150077022 @default.
- W4381570403 hasConcept C154945302 @default.
- W4381570403 hasConcept C166957645 @default.
- W4381570403 hasConcept C187320778 @default.
- W4381570403 hasConcept C199978012 @default.
- W4381570403 hasConcept C2778491893 @default.
- W4381570403 hasConcept C2780966255 @default.