Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381573497> ?p ?o ?g. }
- W4381573497 abstract "This study aims to examine three machine learning (ML) techniques, namely random forest (RF), LightGBM, and CatBoost for flooding susceptibility maps (FSMs) in the Vietnamese Vu Gia-Thu Bon (VGTB). The results of ML are compared with those of the rainfall-runoff model, and different training dataset sizes are utilized in the performance assessment. Ten independent factors are assessed. An inventory map with approximately 850 flooding sites is based on several post-flood surveys. The inventory dataset is randomly split between training (70%) and testing (30%). The AUC-ROC results are 97.9%, 99.5%, and 99.5% for CatBoost, LightGBM, and RF, respectively. The FSMs developed by the ML methods show good agreement in terms of an extension with flood inundation maps developed using the rainfall-runoff model. The models’ FSMs showed 10–13% of the total area to be highly susceptible to flooding, consistent with RRI's flood map. The FSMs show that downstream areas (both urbanized and agricultural) are under high and very high levels of susceptibility. Additionally, different sizes of the input datasets are tested to determine the least number of data points having acceptable reliability. The results demonstrate that the ML methods can realistically predict FSMs, regardless of the number of training samples." @default.
- W4381573497 created "2023-06-22" @default.
- W4381573497 creator A5009049813 @default.
- W4381573497 creator A5021426801 @default.
- W4381573497 creator A5023316240 @default.
- W4381573497 creator A5029679531 @default.
- W4381573497 creator A5045270874 @default.
- W4381573497 creator A5046597225 @default.
- W4381573497 creator A5053299285 @default.
- W4381573497 creator A5058157475 @default.
- W4381573497 creator A5064350210 @default.
- W4381573497 creator A5074761112 @default.
- W4381573497 creator A5077448709 @default.
- W4381573497 creator A5081075496 @default.
- W4381573497 creator A5088717626 @default.
- W4381573497 creator A5091909033 @default.
- W4381573497 date "2023-05-04" @default.
- W4381573497 modified "2023-10-02" @default.
- W4381573497 title "Enhancing flood risk assessment through integration of ensemble learning approaches and physical-based hydrological modeling" @default.
- W4381573497 cites W1774599919 @default.
- W4381573497 cites W1973485165 @default.
- W4381573497 cites W1974614011 @default.
- W4381573497 cites W1977009091 @default.
- W4381573497 cites W1981300076 @default.
- W4381573497 cites W1982590625 @default.
- W4381573497 cites W1984663111 @default.
- W4381573497 cites W1993934953 @default.
- W4381573497 cites W1994787627 @default.
- W4381573497 cites W2003049509 @default.
- W4381573497 cites W2010404962 @default.
- W4381573497 cites W2027386095 @default.
- W4381573497 cites W2031292142 @default.
- W4381573497 cites W2042315239 @default.
- W4381573497 cites W2065642067 @default.
- W4381573497 cites W2069663627 @default.
- W4381573497 cites W2072066233 @default.
- W4381573497 cites W2075513266 @default.
- W4381573497 cites W2083029259 @default.
- W4381573497 cites W2113242816 @default.
- W4381573497 cites W2114518782 @default.
- W4381573497 cites W2134562132 @default.
- W4381573497 cites W2144865900 @default.
- W4381573497 cites W2155632266 @default.
- W4381573497 cites W2156589291 @default.
- W4381573497 cites W2169886917 @default.
- W4381573497 cites W2197420211 @default.
- W4381573497 cites W2229346331 @default.
- W4381573497 cites W2309165934 @default.
- W4381573497 cites W2320674230 @default.
- W4381573497 cites W2408377373 @default.
- W4381573497 cites W2423094380 @default.
- W4381573497 cites W2441507532 @default.
- W4381573497 cites W2476051373 @default.
- W4381573497 cites W2558773886 @default.
- W4381573497 cites W2606804832 @default.
- W4381573497 cites W2617458977 @default.
- W4381573497 cites W2620109964 @default.
- W4381573497 cites W2620530835 @default.
- W4381573497 cites W2640557513 @default.
- W4381573497 cites W2724490448 @default.
- W4381573497 cites W2755533000 @default.
- W4381573497 cites W2761806306 @default.
- W4381573497 cites W2766400859 @default.
- W4381573497 cites W2768784310 @default.
- W4381573497 cites W2780363565 @default.
- W4381573497 cites W2782231581 @default.
- W4381573497 cites W2796299618 @default.
- W4381573497 cites W2810425438 @default.
- W4381573497 cites W2811015344 @default.
- W4381573497 cites W2811032661 @default.
- W4381573497 cites W2884754187 @default.
- W4381573497 cites W2887223098 @default.
- W4381573497 cites W2891636131 @default.
- W4381573497 cites W2895196240 @default.
- W4381573497 cites W2903237317 @default.
- W4381573497 cites W2903266193 @default.
- W4381573497 cites W2908678253 @default.
- W4381573497 cites W2911424673 @default.
- W4381573497 cites W2911964244 @default.
- W4381573497 cites W2912681060 @default.
- W4381573497 cites W2914256809 @default.
- W4381573497 cites W2921408316 @default.
- W4381573497 cites W2927539500 @default.
- W4381573497 cites W2938393691 @default.
- W4381573497 cites W2941114027 @default.
- W4381573497 cites W2942851257 @default.
- W4381573497 cites W2946020082 @default.
- W4381573497 cites W2955858817 @default.
- W4381573497 cites W2968428967 @default.
- W4381573497 cites W2973053290 @default.
- W4381573497 cites W2979804492 @default.
- W4381573497 cites W2981078235 @default.
- W4381573497 cites W2983674910 @default.
- W4381573497 cites W2990338582 @default.
- W4381573497 cites W2992804683 @default.
- W4381573497 cites W2993767981 @default.
- W4381573497 cites W2995351650 @default.
- W4381573497 cites W2998815193 @default.
- W4381573497 cites W2999680005 @default.
- W4381573497 cites W3006382827 @default.