Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381609726> ?p ?o ?g. }
- W4381609726 endingPage "45935" @default.
- W4381609726 startingPage "45910" @default.
- W4381609726 abstract "Monitoring nutritional values in food can help an individual in planning a healthy diet. In addition, regular dietary assessment can improve and maintain the physical and mental health of individuals. Recent advancement in computer vision using Deep Learning has enabled researchers to develop various techniques for automatic food nutrition estimation frameworks. Researchers have also contributed to prepare large food image datasets consisting of various food classes for this purpose. However, automatic estimation of nutritional values from food images still remains a challenging task. This review paper critically analyzes and summarizes existing methodologies and datasets used for automated estimation of nutritional value from food images. We first define the taxonomies in order to categorize the existing research works. Then, we study different methods to detect the food value estimation from food images in those categories. We have critically analyzed existing methods and compared the performance of various approaches for estimating food value using conventional performance metrics such as Accuracy, Error Rate, Intersection over Union (IoU), Sensitivity, Specificity, Precision, etc. In particular, we emphasize the current trends and techniques of Deep Learning-based approaches for food value estimation from images. Moreover, we have identified the ongoing challenges associated with automated food estimation systems and outlined the potential future directions. This review can immensely benefit researchers and practitioners, including computer scientists, health practitioners, and nutritionists." @default.
- W4381609726 created "2023-06-23" @default.
- W4381609726 creator A5000819439 @default.
- W4381609726 creator A5008013786 @default.
- W4381609726 creator A5028239863 @default.
- W4381609726 creator A5029798067 @default.
- W4381609726 creator A5056001835 @default.
- W4381609726 creator A5058357754 @default.
- W4381609726 date "2023-01-01" @default.
- W4381609726 modified "2023-09-25" @default.
- W4381609726 title "A Study on Food Value Estimation From Images: Taxonomies, Datasets, and Techniques" @default.
- W4381609726 cites W1243714721 @default.
- W4381609726 cites W12634471 @default.
- W4381609726 cites W1496513042 @default.
- W4381609726 cites W1772173773 @default.
- W4381609726 cites W1816230274 @default.
- W4381609726 cites W1963726930 @default.
- W4381609726 cites W1964856489 @default.
- W4381609726 cites W1977013943 @default.
- W4381609726 cites W1979008561 @default.
- W4381609726 cites W1979931042 @default.
- W4381609726 cites W1981969984 @default.
- W4381609726 cites W1989050358 @default.
- W4381609726 cites W2000105909 @default.
- W4381609726 cites W2006875695 @default.
- W4381609726 cites W2021543368 @default.
- W4381609726 cites W2023253968 @default.
- W4381609726 cites W2026845913 @default.
- W4381609726 cites W2028888808 @default.
- W4381609726 cites W2039374976 @default.
- W4381609726 cites W2044465660 @default.
- W4381609726 cites W2049552648 @default.
- W4381609726 cites W2054939515 @default.
- W4381609726 cites W2057352599 @default.
- W4381609726 cites W2058348111 @default.
- W4381609726 cites W2068591509 @default.
- W4381609726 cites W2083006083 @default.
- W4381609726 cites W2087082746 @default.
- W4381609726 cites W2091013587 @default.
- W4381609726 cites W2104019579 @default.
- W4381609726 cites W2105997696 @default.
- W4381609726 cites W2108598243 @default.
- W4381609726 cites W2109214277 @default.
- W4381609726 cites W2111294722 @default.
- W4381609726 cites W2111298664 @default.
- W4381609726 cites W2117711626 @default.
- W4381609726 cites W2118153703 @default.
- W4381609726 cites W2121098516 @default.
- W4381609726 cites W2121614956 @default.
- W4381609726 cites W2124386111 @default.
- W4381609726 cites W2135431554 @default.
- W4381609726 cites W2153577027 @default.
- W4381609726 cites W2161969291 @default.
- W4381609726 cites W2163352848 @default.
- W4381609726 cites W2163749741 @default.
- W4381609726 cites W2163969215 @default.
- W4381609726 cites W2168154353 @default.
- W4381609726 cites W2194011657 @default.
- W4381609726 cites W2206370378 @default.
- W4381609726 cites W2208802265 @default.
- W4381609726 cites W2256138263 @default.
- W4381609726 cites W2293499654 @default.
- W4381609726 cites W2297170704 @default.
- W4381609726 cites W2310271424 @default.
- W4381609726 cites W2354628843 @default.
- W4381609726 cites W2414162830 @default.
- W4381609726 cites W2466671568 @default.
- W4381609726 cites W2481356228 @default.
- W4381609726 cites W2526198870 @default.
- W4381609726 cites W2530422462 @default.
- W4381609726 cites W2530542266 @default.
- W4381609726 cites W2531603677 @default.
- W4381609726 cites W2531634031 @default.
- W4381609726 cites W2560804113 @default.
- W4381609726 cites W2563053307 @default.
- W4381609726 cites W2583892095 @default.
- W4381609726 cites W2585425668 @default.
- W4381609726 cites W2643943583 @default.
- W4381609726 cites W2714342494 @default.
- W4381609726 cites W2726971752 @default.
- W4381609726 cites W2741230247 @default.
- W4381609726 cites W2756716612 @default.
- W4381609726 cites W2777712566 @default.
- W4381609726 cites W2778392031 @default.
- W4381609726 cites W2780418809 @default.
- W4381609726 cites W2892840297 @default.
- W4381609726 cites W2894676449 @default.
- W4381609726 cites W2906920259 @default.
- W4381609726 cites W2914390167 @default.
- W4381609726 cites W2915002052 @default.
- W4381609726 cites W2921533448 @default.
- W4381609726 cites W2921818763 @default.
- W4381609726 cites W2926225070 @default.
- W4381609726 cites W2962691457 @default.
- W4381609726 cites W2962766617 @default.
- W4381609726 cites W2963323244 @default.
- W4381609726 cites W2963556277 @default.
- W4381609726 cites W2963912358 @default.