Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381616218> ?p ?o ?g. }
- W4381616218 endingPage "16" @default.
- W4381616218 startingPage "1" @default.
- W4381616218 abstract "AbstractAbstractIn parametric non-linear profile modeling, it is crucial to map the impact of model parameters to a single metric. According to the profile monitoring literature, using multivariate T2 statistic to monitor the stability of the parameters simultaneously is a common approach. However, this approach only focuses on the estimated parameters of the non-linear model and treats them as separate but correlated quality characteristics of the process. Consequently, they do not take full advantage of the model structure. To address this limitation, we propose a procedure to monitor profiles based on a non-linear mixed model that considers the proper variance-covariance structure. Our proposed method is based on the concept of externally studentized residuals to test whether a given profile significantly deviates from the other profiles in the non-linear mixed model. The results show that our control chart is effective and appears to perform better than the T2 chart.Keywords: T2 control chartnon-linear mixed modelparametric modelingprofile monitoringχ2 statistic AcknowledgmentsThe authors thank the editor and two referees for the constructive comments and suggestions, which greatly improved the quality of the article.Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementRestrictions apply to the availability of the data used in the Case Study Section, which were used under license for this study.Additional informationNotes on contributorsA. Valeria QuevedoA. Valeria Quevedo obtained her Ph.D. in Statistics from Virginia Tech in 2019, her MS in Statistics from Virginia Tech in 2017, and her Master in Operations Research from the University of British Columbia in 2008. She is currently Associate Professor at Universidad de Piura, Peru. Her research interests center on profile monitoring, Gaussian process regression, and engineering education.G. Geoffrey ViningG. Geoffrey Vining is a Professor of Statistics at Virginia Tech. From 1999-2006, he also was the department head. He is an Honorary Member of the ASQ, a Fellow of the ASQ, a Fellow of the American Statistical Association (ASA), and an Elected Member of the International Statistical Institute. Dr. Vining is the author of three textbooks. Dr. Vining served as Editor of the Journal of Quality Technology from 1998-2000 and as Editor-in-Chief of Quality Engineering from 2008-2009. He has received ASQ Shewhart Medal, the 2015 ENBIS Medal. He also received an Honorary Doctor of Technology from Luleå University of Technology (Sweden)." @default.
- W4381616218 created "2023-06-23" @default.
- W4381616218 creator A5001898521 @default.
- W4381616218 creator A5061362806 @default.
- W4381616218 date "2023-06-21" @default.
- W4381616218 modified "2023-09-27" @default.
- W4381616218 title "A non-linear mixed model approach for detecting outlying profiles" @default.
- W4381616218 cites W1479584399 @default.
- W4381616218 cites W1502922572 @default.
- W4381616218 cites W1511738908 @default.
- W4381616218 cites W1547408280 @default.
- W4381616218 cites W1554758801 @default.
- W4381616218 cites W1566093225 @default.
- W4381616218 cites W1571174791 @default.
- W4381616218 cites W1580673759 @default.
- W4381616218 cites W1607585411 @default.
- W4381616218 cites W170782846 @default.
- W4381616218 cites W1771480913 @default.
- W4381616218 cites W1965200303 @default.
- W4381616218 cites W1973635152 @default.
- W4381616218 cites W1984047258 @default.
- W4381616218 cites W1989638282 @default.
- W4381616218 cites W1993147091 @default.
- W4381616218 cites W2001100372 @default.
- W4381616218 cites W2004249081 @default.
- W4381616218 cites W2004474192 @default.
- W4381616218 cites W2015249241 @default.
- W4381616218 cites W2024412510 @default.
- W4381616218 cites W2031453543 @default.
- W4381616218 cites W2032657652 @default.
- W4381616218 cites W2044040070 @default.
- W4381616218 cites W2063680671 @default.
- W4381616218 cites W2071374834 @default.
- W4381616218 cites W2082389740 @default.
- W4381616218 cites W2084397698 @default.
- W4381616218 cites W2088502517 @default.
- W4381616218 cites W2108365617 @default.
- W4381616218 cites W2131969788 @default.
- W4381616218 cites W2134421465 @default.
- W4381616218 cites W21376189 @default.
- W4381616218 cites W2139356790 @default.
- W4381616218 cites W2148660763 @default.
- W4381616218 cites W2469441229 @default.
- W4381616218 cites W2498631646 @default.
- W4381616218 cites W2597248468 @default.
- W4381616218 cites W26016521 @default.
- W4381616218 cites W2757169940 @default.
- W4381616218 cites W2771915316 @default.
- W4381616218 cites W2810894239 @default.
- W4381616218 cites W2977620188 @default.
- W4381616218 cites W3037248615 @default.
- W4381616218 cites W3214261781 @default.
- W4381616218 cites W4205562332 @default.
- W4381616218 cites W4243563432 @default.
- W4381616218 cites W4285594958 @default.
- W4381616218 cites W47198768 @default.
- W4381616218 cites W64578218 @default.
- W4381616218 doi "https://doi.org/10.1080/00224065.2023.2217363" @default.
- W4381616218 hasPublicationYear "2023" @default.
- W4381616218 type Work @default.
- W4381616218 citedByCount "0" @default.
- W4381616218 crossrefType "journal-article" @default.
- W4381616218 hasAuthorship W4381616218A5001898521 @default.
- W4381616218 hasAuthorship W4381616218A5061362806 @default.
- W4381616218 hasConcept C105795698 @default.
- W4381616218 hasConcept C111919701 @default.
- W4381616218 hasConcept C113644684 @default.
- W4381616218 hasConcept C117251300 @default.
- W4381616218 hasConcept C124101348 @default.
- W4381616218 hasConcept C153720581 @default.
- W4381616218 hasConcept C163175372 @default.
- W4381616218 hasConcept C178650346 @default.
- W4381616218 hasConcept C196985124 @default.
- W4381616218 hasConcept C33923547 @default.
- W4381616218 hasConcept C41008148 @default.
- W4381616218 hasConcept C89128539 @default.
- W4381616218 hasConcept C98045186 @default.
- W4381616218 hasConceptScore W4381616218C105795698 @default.
- W4381616218 hasConceptScore W4381616218C111919701 @default.
- W4381616218 hasConceptScore W4381616218C113644684 @default.
- W4381616218 hasConceptScore W4381616218C117251300 @default.
- W4381616218 hasConceptScore W4381616218C124101348 @default.
- W4381616218 hasConceptScore W4381616218C153720581 @default.
- W4381616218 hasConceptScore W4381616218C163175372 @default.
- W4381616218 hasConceptScore W4381616218C178650346 @default.
- W4381616218 hasConceptScore W4381616218C196985124 @default.
- W4381616218 hasConceptScore W4381616218C33923547 @default.
- W4381616218 hasConceptScore W4381616218C41008148 @default.
- W4381616218 hasConceptScore W4381616218C89128539 @default.
- W4381616218 hasConceptScore W4381616218C98045186 @default.
- W4381616218 hasLocation W43816162181 @default.
- W4381616218 hasOpenAccess W4381616218 @default.
- W4381616218 hasPrimaryLocation W43816162181 @default.
- W4381616218 hasRelatedWork W2004740515 @default.
- W4381616218 hasRelatedWork W2055715190 @default.
- W4381616218 hasRelatedWork W2324991838 @default.
- W4381616218 hasRelatedWork W2358364009 @default.
- W4381616218 hasRelatedWork W2371761733 @default.