Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381617463> ?p ?o ?g. }
- W4381617463 endingPage "2133" @default.
- W4381617463 startingPage "2133" @default.
- W4381617463 abstract "Artificial intelligence (AI) applications in mammography have gained significant popular attention; however, AI has the potential to revolutionize other aspects of breast imaging beyond simple lesion detection. AI has the potential to enhance risk assessment by combining conventional factors with imaging and improve lesion detection through a comparison with prior studies and considerations of symmetry. It also holds promise in ultrasound analysis and automated whole breast ultrasound, areas marked by unique challenges. AI's potential utility also extends to administrative tasks such as MQSA compliance, scheduling, and protocoling, which can reduce the radiologists' workload. However, adoption in breast imaging faces limitations in terms of data quality and standardization, generalizability, benchmarking performance, and integration into clinical workflows. Developing methods for radiologists to interpret AI decisions, and understanding patient perspectives to build trust in AI results, will be key future endeavors, with the ultimate aim of fostering more efficient radiology practices and better patient care." @default.
- W4381617463 created "2023-06-23" @default.
- W4381617463 creator A5021079465 @default.
- W4381617463 creator A5068902918 @default.
- W4381617463 date "2023-06-21" @default.
- W4381617463 modified "2023-09-26" @default.
- W4381617463 title "Expanding Horizons: The Realities of CAD, the Promise of Artificial Intelligence, and Machine Learning’s Role in Breast Imaging beyond Screening Mammography" @default.
- W4381617463 cites W2019086003 @default.
- W4381617463 cites W2022950569 @default.
- W4381617463 cites W2038751842 @default.
- W4381617463 cites W2039165654 @default.
- W4381617463 cites W2042527316 @default.
- W4381617463 cites W2053085689 @default.
- W4381617463 cites W2058362631 @default.
- W4381617463 cites W2106805319 @default.
- W4381617463 cites W2462140855 @default.
- W4381617463 cites W2549775784 @default.
- W4381617463 cites W2580262276 @default.
- W4381617463 cites W2750753304 @default.
- W4381617463 cites W2756043273 @default.
- W4381617463 cites W2766325998 @default.
- W4381617463 cites W2767244312 @default.
- W4381617463 cites W2807563096 @default.
- W4381617463 cites W2888646712 @default.
- W4381617463 cites W2909967666 @default.
- W4381617463 cites W2931383325 @default.
- W4381617463 cites W2936218643 @default.
- W4381617463 cites W2949096937 @default.
- W4381617463 cites W2964642168 @default.
- W4381617463 cites W2980030301 @default.
- W4381617463 cites W2998175747 @default.
- W4381617463 cites W3005150473 @default.
- W4381617463 cites W3012040941 @default.
- W4381617463 cites W3014080415 @default.
- W4381617463 cites W3015264156 @default.
- W4381617463 cites W3025397287 @default.
- W4381617463 cites W3027035027 @default.
- W4381617463 cites W3030108548 @default.
- W4381617463 cites W3082684893 @default.
- W4381617463 cites W3094595351 @default.
- W4381617463 cites W3135234097 @default.
- W4381617463 cites W3139638034 @default.
- W4381617463 cites W3158418391 @default.
- W4381617463 cites W3160781075 @default.
- W4381617463 cites W3191637475 @default.
- W4381617463 cites W3193549799 @default.
- W4381617463 cites W3208519598 @default.
- W4381617463 cites W3213232584 @default.
- W4381617463 cites W4200254864 @default.
- W4381617463 cites W4205485513 @default.
- W4381617463 cites W4206285699 @default.
- W4381617463 cites W4211107679 @default.
- W4381617463 cites W4214571297 @default.
- W4381617463 cites W4220660589 @default.
- W4381617463 cites W4282921293 @default.
- W4381617463 cites W4298142543 @default.
- W4381617463 cites W4307539314 @default.
- W4381617463 cites W4308365346 @default.
- W4381617463 cites W4308942183 @default.
- W4381617463 cites W4311102276 @default.
- W4381617463 cites W4319754535 @default.
- W4381617463 cites W4362475323 @default.
- W4381617463 cites W4377097091 @default.
- W4381617463 cites W4377564079 @default.
- W4381617463 doi "https://doi.org/10.3390/diagnostics13132133" @default.
- W4381617463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37443526" @default.
- W4381617463 hasPublicationYear "2023" @default.
- W4381617463 type Work @default.
- W4381617463 citedByCount "0" @default.
- W4381617463 crossrefType "journal-article" @default.
- W4381617463 hasAuthorship W4381617463A5021079465 @default.
- W4381617463 hasAuthorship W4381617463A5068902918 @default.
- W4381617463 hasBestOaLocation W43816174631 @default.
- W4381617463 hasConcept C111919701 @default.
- W4381617463 hasConcept C121608353 @default.
- W4381617463 hasConcept C126322002 @default.
- W4381617463 hasConcept C138496976 @default.
- W4381617463 hasConcept C144133560 @default.
- W4381617463 hasConcept C154945302 @default.
- W4381617463 hasConcept C15744967 @default.
- W4381617463 hasConcept C162853370 @default.
- W4381617463 hasConcept C177212765 @default.
- W4381617463 hasConcept C188087704 @default.
- W4381617463 hasConcept C19527891 @default.
- W4381617463 hasConcept C27158222 @default.
- W4381617463 hasConcept C2777423100 @default.
- W4381617463 hasConcept C2777432617 @default.
- W4381617463 hasConcept C2778476105 @default.
- W4381617463 hasConcept C2780472235 @default.
- W4381617463 hasConcept C2910710802 @default.
- W4381617463 hasConcept C31601959 @default.
- W4381617463 hasConcept C41008148 @default.
- W4381617463 hasConcept C530470458 @default.
- W4381617463 hasConcept C71924100 @default.
- W4381617463 hasConcept C77088390 @default.
- W4381617463 hasConcept C86251818 @default.
- W4381617463 hasConceptScore W4381617463C111919701 @default.
- W4381617463 hasConceptScore W4381617463C121608353 @default.