Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381617811> ?p ?o ?g. }
- W4381617811 endingPage "9881" @default.
- W4381617811 startingPage "9881" @default.
- W4381617811 abstract "Traffic management and control applications require comprehensive knowledge of traffic flow data. Typically, such information is gathered using traffic sensors, which have two basic challenges: First, it is impractical or impossible to install sensors on every arc in a network. Second, sensors do not provide direct information on origin-to-destination (O–D) demand flows. Consequently, it is essential to identify the optimal locations for deploying traffic sensors and then enhance the knowledge gained from this link flow sample to forecast the network’s traffic flow. This article presents residual neural networks—a very deep set of neural networks—to the problem for the first time. The suggested architecture reliably predicts the whole network’s O–D flows utilizing link flows, hence inverting the standard traffic assignment problem. It deduces a relevant correlation between traffic flow statistics and network topology from traffic flow characteristics. To train the proposed deep learning architecture, random synthetic flow data was generated from the historical demand data of the network. A large-scale network was used to test and confirm the model’s performance. Then, the Sioux Falls network was used to compare the results with the literature. The robustness of applying the proposed framework to this particular combined traffic flow problem was determined by maintaining superior prediction accuracy over the literature with a moderate number of traffic sensors." @default.
- W4381617811 created "2023-06-23" @default.
- W4381617811 creator A5016753232 @default.
- W4381617811 creator A5027468515 @default.
- W4381617811 creator A5030025812 @default.
- W4381617811 creator A5055031570 @default.
- W4381617811 creator A5092234312 @default.
- W4381617811 date "2023-06-21" @default.
- W4381617811 modified "2023-10-09" @default.
- W4381617811 title "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information" @default.
- W4381617811 cites W1657732787 @default.
- W4381617811 cites W1677182931 @default.
- W4381617811 cites W1964042991 @default.
- W4381617811 cites W1973727721 @default.
- W4381617811 cites W1973931291 @default.
- W4381617811 cites W1975006524 @default.
- W4381617811 cites W1976989582 @default.
- W4381617811 cites W1979288125 @default.
- W4381617811 cites W1987988561 @default.
- W4381617811 cites W1989740797 @default.
- W4381617811 cites W1995315381 @default.
- W4381617811 cites W1996133000 @default.
- W4381617811 cites W1996212582 @default.
- W4381617811 cites W2002268174 @default.
- W4381617811 cites W2005652019 @default.
- W4381617811 cites W2016207616 @default.
- W4381617811 cites W2019663200 @default.
- W4381617811 cites W2021250916 @default.
- W4381617811 cites W2022171715 @default.
- W4381617811 cites W2025382546 @default.
- W4381617811 cites W2032006046 @default.
- W4381617811 cites W2036580946 @default.
- W4381617811 cites W2038606782 @default.
- W4381617811 cites W2038754846 @default.
- W4381617811 cites W2052645591 @default.
- W4381617811 cites W2054089173 @default.
- W4381617811 cites W2058523443 @default.
- W4381617811 cites W2060596950 @default.
- W4381617811 cites W2072538671 @default.
- W4381617811 cites W2080627642 @default.
- W4381617811 cites W2081120846 @default.
- W4381617811 cites W2083391033 @default.
- W4381617811 cites W2085502150 @default.
- W4381617811 cites W2093244236 @default.
- W4381617811 cites W2093961844 @default.
- W4381617811 cites W2097117768 @default.
- W4381617811 cites W2100586428 @default.
- W4381617811 cites W2100938043 @default.
- W4381617811 cites W2105381119 @default.
- W4381617811 cites W2115153093 @default.
- W4381617811 cites W2136915294 @default.
- W4381617811 cites W2142867598 @default.
- W4381617811 cites W2145179815 @default.
- W4381617811 cites W2147457766 @default.
- W4381617811 cites W2152748215 @default.
- W4381617811 cites W2157054705 @default.
- W4381617811 cites W2160476305 @default.
- W4381617811 cites W2163563615 @default.
- W4381617811 cites W2334955119 @default.
- W4381617811 cites W2339495108 @default.
- W4381617811 cites W2382533298 @default.
- W4381617811 cites W2515359330 @default.
- W4381617811 cites W2731150448 @default.
- W4381617811 cites W2883955855 @default.
- W4381617811 cites W2883979847 @default.
- W4381617811 cites W2916259693 @default.
- W4381617811 cites W2921625508 @default.
- W4381617811 cites W2961359668 @default.
- W4381617811 cites W2964291233 @default.
- W4381617811 cites W2964656371 @default.
- W4381617811 cites W2973455388 @default.
- W4381617811 cites W2974808003 @default.
- W4381617811 cites W2999301586 @default.
- W4381617811 cites W3009536125 @default.
- W4381617811 cites W3014759277 @default.
- W4381617811 cites W3032362243 @default.
- W4381617811 cites W3040924355 @default.
- W4381617811 cites W3101454199 @default.
- W4381617811 cites W3123191313 @default.
- W4381617811 cites W3132013601 @default.
- W4381617811 cites W3199305487 @default.
- W4381617811 cites W3203984526 @default.
- W4381617811 cites W4200297544 @default.
- W4381617811 cites W4226408066 @default.
- W4381617811 cites W4236826060 @default.
- W4381617811 cites W4285110263 @default.
- W4381617811 cites W4285204689 @default.
- W4381617811 cites W4285265528 @default.
- W4381617811 cites W4285293663 @default.
- W4381617811 cites W4285405251 @default.
- W4381617811 cites W4288064597 @default.
- W4381617811 cites W4300981170 @default.
- W4381617811 cites W4306738998 @default.
- W4381617811 doi "https://doi.org/10.3390/su15139881" @default.
- W4381617811 hasPublicationYear "2023" @default.
- W4381617811 type Work @default.
- W4381617811 citedByCount "2" @default.
- W4381617811 countsByYear W43816178112023 @default.