Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381617981> ?p ?o ?g. }
- W4381617981 endingPage "4844" @default.
- W4381617981 startingPage "4844" @default.
- W4381617981 abstract "The development of distributed renewable energy resources and smart energy management are efficient approaches to decarbonizing building energy systems. Reinforcement learning (RL) is a data-driven control algorithm that trains a large amount of data to learn control policy. However, this learning process generally presents low learning efficiency using real-world stochastic data. To address this challenge, this study proposes a model-based RL approach to optimize the operation of existing zero-energy houses considering PV generation consumption and energy costs. The model-based approach takes advantage of the inner understanding of the system dynamics; this knowledge improves the learning efficiency. A reward function is designed considering the physical constraints of battery storage, photovoltaic (PV) production feed-in profit, and energy cost. Measured data of a zero-energy house are used to train and test the proposed RL agent control, including Q-learning, deep Q network (DQN), and deep deterministic policy gradient (DDPG) agents. The results show that the proposed RL agents can achieve fast convergence during the training process. In comparison with the rule-based strategy, test cases verify the cost-effectiveness performances of proposed RL approaches in scheduling operations of the hybrid energy system under different scenarios. The comparative analysis of test periods shows that the DQN agent presents better energy cost-saving performances than Q-learning while the Q-learning agent presents more flexible action control of the battery with the fluctuation of real-time electricity prices. The DDPG algorithm can achieve the highest PV self-consumption ratio, 49.4%, and the self-sufficiency ratio reaches 36.7%. The DDPG algorithm outperforms rule-based operation by 7.2% for energy cost during test periods." @default.
- W4381617981 created "2023-06-23" @default.
- W4381617981 creator A5008070276 @default.
- W4381617981 creator A5039737726 @default.
- W4381617981 creator A5059197749 @default.
- W4381617981 creator A5075969794 @default.
- W4381617981 creator A5091217954 @default.
- W4381617981 date "2023-06-21" @default.
- W4381617981 modified "2023-09-26" @default.
- W4381617981 title "Performance Assessment and Comparative Analysis of Photovoltaic-Battery System Scheduling in an Existing Zero-Energy House Based on Reinforcement Learning Control" @default.
- W4381617981 cites W2145339207 @default.
- W4381617981 cites W2789880759 @default.
- W4381617981 cites W2790956481 @default.
- W4381617981 cites W2803091454 @default.
- W4381617981 cites W2896384098 @default.
- W4381617981 cites W2913866098 @default.
- W4381617981 cites W2948678619 @default.
- W4381617981 cites W2953451684 @default.
- W4381617981 cites W2984233402 @default.
- W4381617981 cites W3090789943 @default.
- W4381617981 cites W3112774825 @default.
- W4381617981 cites W3160243790 @default.
- W4381617981 cites W3168289825 @default.
- W4381617981 cites W3171206532 @default.
- W4381617981 cites W3172412077 @default.
- W4381617981 cites W3173302928 @default.
- W4381617981 cites W3173903399 @default.
- W4381617981 cites W3182793133 @default.
- W4381617981 cites W3186137768 @default.
- W4381617981 cites W3194416698 @default.
- W4381617981 cites W3199775902 @default.
- W4381617981 cites W4200202704 @default.
- W4381617981 cites W4210439997 @default.
- W4381617981 cites W4213451426 @default.
- W4381617981 cites W4214507393 @default.
- W4381617981 cites W4214682708 @default.
- W4381617981 cites W4220936826 @default.
- W4381617981 cites W4221125501 @default.
- W4381617981 cites W4283576535 @default.
- W4381617981 cites W4283794141 @default.
- W4381617981 cites W4285121678 @default.
- W4381617981 cites W4291298155 @default.
- W4381617981 cites W4291993240 @default.
- W4381617981 cites W4296183226 @default.
- W4381617981 cites W4297989330 @default.
- W4381617981 cites W4306253561 @default.
- W4381617981 cites W4307920757 @default.
- W4381617981 cites W4310012712 @default.
- W4381617981 cites W4313252577 @default.
- W4381617981 cites W4313399015 @default.
- W4381617981 cites W4315864862 @default.
- W4381617981 cites W4322628453 @default.
- W4381617981 cites W4324359934 @default.
- W4381617981 cites W4362464856 @default.
- W4381617981 cites W4366779688 @default.
- W4381617981 cites W4367292930 @default.
- W4381617981 doi "https://doi.org/10.3390/en16134844" @default.
- W4381617981 hasPublicationYear "2023" @default.
- W4381617981 type Work @default.
- W4381617981 citedByCount "0" @default.
- W4381617981 crossrefType "journal-article" @default.
- W4381617981 hasAuthorship W4381617981A5008070276 @default.
- W4381617981 hasAuthorship W4381617981A5039737726 @default.
- W4381617981 hasAuthorship W4381617981A5059197749 @default.
- W4381617981 hasAuthorship W4381617981A5075969794 @default.
- W4381617981 hasAuthorship W4381617981A5091217954 @default.
- W4381617981 hasBestOaLocation W43816179811 @default.
- W4381617981 hasConcept C105795698 @default.
- W4381617981 hasConcept C119599485 @default.
- W4381617981 hasConcept C121332964 @default.
- W4381617981 hasConcept C126255220 @default.
- W4381617981 hasConcept C127413603 @default.
- W4381617981 hasConcept C154945302 @default.
- W4381617981 hasConcept C163258240 @default.
- W4381617981 hasConcept C186370098 @default.
- W4381617981 hasConcept C188116033 @default.
- W4381617981 hasConcept C188573790 @default.
- W4381617981 hasConcept C206658404 @default.
- W4381617981 hasConcept C2742236 @default.
- W4381617981 hasConcept C2780165032 @default.
- W4381617981 hasConcept C33923547 @default.
- W4381617981 hasConcept C41008148 @default.
- W4381617981 hasConcept C41291067 @default.
- W4381617981 hasConcept C555008776 @default.
- W4381617981 hasConcept C62520636 @default.
- W4381617981 hasConcept C73916439 @default.
- W4381617981 hasConcept C7817414 @default.
- W4381617981 hasConcept C97541855 @default.
- W4381617981 hasConceptScore W4381617981C105795698 @default.
- W4381617981 hasConceptScore W4381617981C119599485 @default.
- W4381617981 hasConceptScore W4381617981C121332964 @default.
- W4381617981 hasConceptScore W4381617981C126255220 @default.
- W4381617981 hasConceptScore W4381617981C127413603 @default.
- W4381617981 hasConceptScore W4381617981C154945302 @default.
- W4381617981 hasConceptScore W4381617981C163258240 @default.
- W4381617981 hasConceptScore W4381617981C186370098 @default.
- W4381617981 hasConceptScore W4381617981C188116033 @default.
- W4381617981 hasConceptScore W4381617981C188573790 @default.