Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381620439> ?p ?o ?g. }
- W4381620439 endingPage "120885" @default.
- W4381620439 startingPage "120885" @default.
- W4381620439 abstract "The presence of vegetation in the water bodies has a profound effect on the flow velocity in an open channel due to the resistance offered by it. In rivers, estuaries, and coastal locations, vegetation significantly impacts the local hydrodynamics, which in turn affects various morphodynamic and biophysical processes. In this context, an accurate prediction of flow velocity in a vegetative alluvial channel is paramount. Several empirical and data-driven methodologies have been proposed as viable solutions in the literature to predict the flow velocity in a vegetative alluvial channel. Empirical equations cannot always be trusted to be accurate, but they have the advantage of being simple and physically appealing. Since machine learning (ML) techniques can capture complicated non-linear correlations, they are frequently employed to map natural processes. In this work, we investigate the performance of multiple standalone and hybrid Machine Learning (ML) techniques for predicting flow velocity (U) in a vegetative alluvial channel. An array of datasets available in the literature, comprising wide ranges of the number of cylinders per unit horizontal area (m), flow depth (h), channel slope (i), height of the vegetation (k), diameter of cylindrical vegetation (D), and non-dimensional drag coefficient (Cd) have been utilized in this study. For standalone methods, we made use of the M5Prime and Random Tree (RT) methods, while for hybrid ML method approaches, we made use of the Additive Regressor (AR) and Bagging (BA) methods. In the present study, six ML methods, viz., M5P, AR-M5P, BA-M5P, RT, BA-RT, and AR-RT, have been explored and their performance has also been analyzed. Among the proposed methods, AR-M5P provides the highest prediction (R2 = 0.954, CC = 0.977, NSE = 0.954, MAE = 0.042, MSE = 0.003, and Pbias = 1.466), followed by BA-M5P, BA-RT, M5P, RT, and AR-RT for the prediction of flow velocity in a vegetative alluvial channel. We have also performed the sensitivity analysis and found that the height of vegetation is the most sensitive variable in flow velocity prediction." @default.
- W4381620439 created "2023-06-23" @default.
- W4381620439 creator A5048101513 @default.
- W4381620439 creator A5066935717 @default.
- W4381620439 creator A5076160843 @default.
- W4381620439 creator A5076304438 @default.
- W4381620439 date "2023-06-01" @default.
- W4381620439 modified "2023-09-25" @default.
- W4381620439 title "Predicting flow velocity in a vegetative alluvial channel using standalone and hybrid machine learning techniques" @default.
- W4381620439 cites W1563787198 @default.
- W4381620439 cites W1893680646 @default.
- W4381620439 cites W1928729174 @default.
- W4381620439 cites W1966310833 @default.
- W4381620439 cites W1978153689 @default.
- W4381620439 cites W1985479415 @default.
- W4381620439 cites W1992482287 @default.
- W4381620439 cites W2007824627 @default.
- W4381620439 cites W2017554565 @default.
- W4381620439 cites W2035067112 @default.
- W4381620439 cites W2035257533 @default.
- W4381620439 cites W2037226919 @default.
- W4381620439 cites W2038591650 @default.
- W4381620439 cites W2043147637 @default.
- W4381620439 cites W2046884547 @default.
- W4381620439 cites W2053587932 @default.
- W4381620439 cites W2060258143 @default.
- W4381620439 cites W2077489441 @default.
- W4381620439 cites W2089715810 @default.
- W4381620439 cites W2091348975 @default.
- W4381620439 cites W2115837867 @default.
- W4381620439 cites W2120240539 @default.
- W4381620439 cites W2122759485 @default.
- W4381620439 cites W2125495015 @default.
- W4381620439 cites W2141713151 @default.
- W4381620439 cites W2149777495 @default.
- W4381620439 cites W2157431216 @default.
- W4381620439 cites W2164871719 @default.
- W4381620439 cites W2170670377 @default.
- W4381620439 cites W2226219155 @default.
- W4381620439 cites W2292184863 @default.
- W4381620439 cites W2467331356 @default.
- W4381620439 cites W2473259479 @default.
- W4381620439 cites W2612828053 @default.
- W4381620439 cites W2763383283 @default.
- W4381620439 cites W2904904697 @default.
- W4381620439 cites W2925027198 @default.
- W4381620439 cites W2949875821 @default.
- W4381620439 cites W2954696400 @default.
- W4381620439 cites W3036007513 @default.
- W4381620439 cites W3038723260 @default.
- W4381620439 cites W3048827138 @default.
- W4381620439 cites W3080300121 @default.
- W4381620439 cites W3112949821 @default.
- W4381620439 cites W3153181406 @default.
- W4381620439 cites W3193379594 @default.
- W4381620439 cites W4221078344 @default.
- W4381620439 cites W4283756589 @default.
- W4381620439 cites W4284671571 @default.
- W4381620439 cites W4294811335 @default.
- W4381620439 cites W4303684738 @default.
- W4381620439 cites W4316019321 @default.
- W4381620439 doi "https://doi.org/10.1016/j.eswa.2023.120885" @default.
- W4381620439 hasPublicationYear "2023" @default.
- W4381620439 type Work @default.
- W4381620439 citedByCount "1" @default.
- W4381620439 countsByYear W43816204392023 @default.
- W4381620439 crossrefType "journal-article" @default.
- W4381620439 hasAuthorship W4381620439A5048101513 @default.
- W4381620439 hasAuthorship W4381620439A5066935717 @default.
- W4381620439 hasAuthorship W4381620439A5076160843 @default.
- W4381620439 hasAuthorship W4381620439A5076304438 @default.
- W4381620439 hasBestOaLocation W43816204391 @default.
- W4381620439 hasConcept C119857082 @default.
- W4381620439 hasConcept C127162648 @default.
- W4381620439 hasConcept C127313418 @default.
- W4381620439 hasConcept C128990827 @default.
- W4381620439 hasConcept C142724271 @default.
- W4381620439 hasConcept C151730666 @default.
- W4381620439 hasConcept C154945302 @default.
- W4381620439 hasConcept C166693061 @default.
- W4381620439 hasConcept C180925781 @default.
- W4381620439 hasConcept C2524010 @default.
- W4381620439 hasConcept C2776133958 @default.
- W4381620439 hasConcept C2779343474 @default.
- W4381620439 hasConcept C33923547 @default.
- W4381620439 hasConcept C38349280 @default.
- W4381620439 hasConcept C41008148 @default.
- W4381620439 hasConcept C44154836 @default.
- W4381620439 hasConcept C71924100 @default.
- W4381620439 hasConcept C76155785 @default.
- W4381620439 hasConceptScore W4381620439C119857082 @default.
- W4381620439 hasConceptScore W4381620439C127162648 @default.
- W4381620439 hasConceptScore W4381620439C127313418 @default.
- W4381620439 hasConceptScore W4381620439C128990827 @default.
- W4381620439 hasConceptScore W4381620439C142724271 @default.
- W4381620439 hasConceptScore W4381620439C151730666 @default.
- W4381620439 hasConceptScore W4381620439C154945302 @default.
- W4381620439 hasConceptScore W4381620439C166693061 @default.