Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381660836> ?p ?o ?g. }
- W4381660836 endingPage "5735" @default.
- W4381660836 startingPage "5735" @default.
- W4381660836 abstract "This paper presents a novel deep-learning (DL)-based approach for classifying digitally modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal processing (CSP) and were then input into the CAP for training and classification. The classification performance and the generalization abilities of the proposed approach were tested using two distinct datasets that contained the same types of digitally modulated signals, but had distinct generation parameters. The results showed that the classification of digitally modulated signals using CAPs and CCs proposed in the paper outperformed alternative approaches for classifying digitally modulated signals that included conventional classifiers that employed CSP-based techniques, as well as alternative DL-based classifiers that used convolutional neural networks (CNNs) or residual networks (RESNETs) with the in-phase/quadrature (I/Q) data used for training and classification." @default.
- W4381660836 created "2023-06-23" @default.
- W4381660836 creator A5012480474 @default.
- W4381660836 creator A5042532426 @default.
- W4381660836 creator A5063123179 @default.
- W4381660836 creator A5072604216 @default.
- W4381660836 date "2023-06-20" @default.
- W4381660836 modified "2023-09-30" @default.
- W4381660836 title "Deep-Learning-Based Classification of Digitally Modulated Signals Using Capsule Networks and Cyclic Cumulants" @default.
- W4381660836 cites W1972973610 @default.
- W4381660836 cites W1988068600 @default.
- W4381660836 cites W2016720185 @default.
- W4381660836 cites W2097158890 @default.
- W4381660836 cites W2101681100 @default.
- W4381660836 cites W2114267371 @default.
- W4381660836 cites W2116784168 @default.
- W4381660836 cites W2120019163 @default.
- W4381660836 cites W2130185419 @default.
- W4381660836 cites W2133565934 @default.
- W4381660836 cites W2147893740 @default.
- W4381660836 cites W2149255982 @default.
- W4381660836 cites W2154511091 @default.
- W4381660836 cites W2165670531 @default.
- W4381660836 cites W2170778725 @default.
- W4381660836 cites W2539166773 @default.
- W4381660836 cites W2734408173 @default.
- W4381660836 cites W2773170971 @default.
- W4381660836 cites W2775383661 @default.
- W4381660836 cites W2794979778 @default.
- W4381660836 cites W2908583291 @default.
- W4381660836 cites W2922953676 @default.
- W4381660836 cites W3005510567 @default.
- W4381660836 cites W3022121429 @default.
- W4381660836 cites W3039156183 @default.
- W4381660836 cites W3095073866 @default.
- W4381660836 cites W3104028856 @default.
- W4381660836 cites W3198127641 @default.
- W4381660836 cites W4211124476 @default.
- W4381660836 cites W4281716507 @default.
- W4381660836 cites W4285407052 @default.
- W4381660836 cites W4311759245 @default.
- W4381660836 cites W4320031201 @default.
- W4381660836 cites W4327923876 @default.
- W4381660836 doi "https://doi.org/10.3390/s23125735" @default.
- W4381660836 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37420905" @default.
- W4381660836 hasPublicationYear "2023" @default.
- W4381660836 type Work @default.
- W4381660836 citedByCount "0" @default.
- W4381660836 crossrefType "journal-article" @default.
- W4381660836 hasAuthorship W4381660836A5012480474 @default.
- W4381660836 hasAuthorship W4381660836A5042532426 @default.
- W4381660836 hasAuthorship W4381660836A5063123179 @default.
- W4381660836 hasAuthorship W4381660836A5072604216 @default.
- W4381660836 hasBestOaLocation W43816608361 @default.
- W4381660836 hasConcept C108583219 @default.
- W4381660836 hasConcept C11413529 @default.
- W4381660836 hasConcept C119857082 @default.
- W4381660836 hasConcept C127162648 @default.
- W4381660836 hasConcept C134306372 @default.
- W4381660836 hasConcept C153180895 @default.
- W4381660836 hasConcept C154945302 @default.
- W4381660836 hasConcept C155512373 @default.
- W4381660836 hasConcept C177148314 @default.
- W4381660836 hasConcept C178351263 @default.
- W4381660836 hasConcept C33923547 @default.
- W4381660836 hasConcept C41008148 @default.
- W4381660836 hasConcept C50644808 @default.
- W4381660836 hasConcept C76155785 @default.
- W4381660836 hasConcept C81363708 @default.
- W4381660836 hasConceptScore W4381660836C108583219 @default.
- W4381660836 hasConceptScore W4381660836C11413529 @default.
- W4381660836 hasConceptScore W4381660836C119857082 @default.
- W4381660836 hasConceptScore W4381660836C127162648 @default.
- W4381660836 hasConceptScore W4381660836C134306372 @default.
- W4381660836 hasConceptScore W4381660836C153180895 @default.
- W4381660836 hasConceptScore W4381660836C154945302 @default.
- W4381660836 hasConceptScore W4381660836C155512373 @default.
- W4381660836 hasConceptScore W4381660836C177148314 @default.
- W4381660836 hasConceptScore W4381660836C178351263 @default.
- W4381660836 hasConceptScore W4381660836C33923547 @default.
- W4381660836 hasConceptScore W4381660836C41008148 @default.
- W4381660836 hasConceptScore W4381660836C50644808 @default.
- W4381660836 hasConceptScore W4381660836C76155785 @default.
- W4381660836 hasConceptScore W4381660836C81363708 @default.
- W4381660836 hasIssue "12" @default.
- W4381660836 hasLocation W43816608361 @default.
- W4381660836 hasLocation W43816608362 @default.
- W4381660836 hasLocation W43816608363 @default.
- W4381660836 hasLocation W43816608364 @default.
- W4381660836 hasOpenAccess W4381660836 @default.
- W4381660836 hasPrimaryLocation W43816608361 @default.
- W4381660836 hasRelatedWork W2731899572 @default.
- W4381660836 hasRelatedWork W2782645198 @default.
- W4381660836 hasRelatedWork W2999805992 @default.
- W4381660836 hasRelatedWork W3116150086 @default.
- W4381660836 hasRelatedWork W3133861977 @default.
- W4381660836 hasRelatedWork W4200173597 @default.
- W4381660836 hasRelatedWork W4291897433 @default.